DEPARTMENT OF MATHEMATICS UNIVERSITY OF UTAH REAL AND COMPLEX ANALYSIS EXAM

January 2, 2008

Instructions:. Do seven problems, at least three from part A and three from part B. List the problems you have done on the front of your blue book.

Part A.

1. Let (X, μ) be a measure space and $f \ge 0$ an integrable function on X. Prove that for $\epsilon > 0$, there exists $\delta > 0$ such that whenever $\mu(A) < \delta$, then $\int_A f < \epsilon$.

2. Let K be a continuous function on the square $[0,1] \times [0,1]$, and let [0,1] be endowed with the Lebesgue measure. For $f \in L^2([0,1])$ define $Tf(x) = \int_0^1 K(x,y)f(y) \, dy$. Show that $Tf \in L^2([0,1])$ and that $T: L^2 \to L^2$ is a bounded operator with $||T|| \leq ||K||_{\infty}$.

3. Let *H* be a Hilbert space, and let $T : H \to H$ be a self adjoint linear operator, with finite dimensional range V = T(H). Prove that *T* is a compact operator, and that $V = K^{\perp}$, where *K* is the kernel of *T*.

4. Let $f \in L^1([-\pi,\pi])$, and let c_n be the nth Fourier coefficient of f:

$$c_n = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) e^{-inx} \, dx \quad n \in \mathbf{Z}$$

Prove that $c_n \to 0$ as $|n| \to \infty$.

5. Let ℓ^{∞} denote the Banach space of bounded real sequences with norm $||x||_{\infty} = \sup_{i} |x_{i}|$, and ℓ^{1} the Banach space of real sequences with norm $||x||_{1} = \sum_{i} |x_{i}| < \infty$. For $x \in \ell^{\infty}$ and $y \in \ell^{1}$ define $Tx(y) = \sum_{i} x_{i}y_{i}$. Prove that $T : \ell^{\infty} \to \ell^{1*}$ is a bounded operator that is one to one and onto. (Here ℓ^{1*} is the dual space of ℓ^{1} .)

Part B.

6. Let Q be a square in C and f: Q → C a continuous map that is holomorphic on the interior of Q. Also assume that if z ∈ ∂Q then |f(z)| = 1. Show that f extends to a holomorphic map on a neighborhood of Q.
7. Show that the function f(z) = cos z / z² is the complex derivative of a holomorphic function F on C\{0}. Write down a Laurent series for F.

8. Let Δ be the open unit disk and γ the unit circle in \mathbf{C} and $\phi : \gamma \to \mathbf{C}$ a continuous function. Let g be a meromorphic function on \mathbf{C} that has a single simple pole at 0. Define a function $f : \Delta \to \mathbf{C}$ by the formula

$$f(z) = \int_{\gamma} \phi(w)g(w-z)dw.$$

Show that f is holomorphic.

9. Let f be a non-constant meromorphic function on **C**. Show that either there exists a sequence $z_n \to \infty$ with $f(z_n) \to 0$ as $n \to \infty$ or there is a $z \in \mathbf{C}$ such f(z) = 0.

10. Let Ω be an open subset of \mathbf{C} and $f: \Omega \to \mathbf{C}$ a holomorphic function. Let z be a point in Ω and assume that Ω contains a disk D centered at z of radius R. Also assume that f(D) is contained in a disk D' centered at f(z) of radius r. Show that $|f'(z)| \leq r/R$.