Department of Mathematics
 University of Utah
 Real and Complex Analysis Preliminary Examination

August 18, 2010

Instructions: Do seven problems and list on the front of your blue book the seven problems to be graded. Do at least three problems from each part.

Part A:

Problem 1. Suppose (X, \mathcal{M}, μ) is a measure space and $f: X \rightarrow \mathbb{R}$ is a real-valued function on X. Suppose further that $E_{r}:=\{x \mid f(x)>r\}$ is measureable for each rational number r. Either prove the following assertion or find a counter-example: f is measureable.

Problem 2. Suppose (X, \mathcal{M}, μ) is a measure space and fix p and q finite such that $\frac{1}{p}+\frac{1}{q}=1$. Let f_{1}, f_{2}, \ldots be a sequence of functions in $L^{p}(X)$ converging (in L^{p}) to f, and let g_{1}, g_{2}, \ldots be a sequence of functions in L^{q} converging (in L^{q}) to g. Prove that the sequence $f_{1} g_{1}, f_{2} g_{2}, \ldots$ converges to $f g$ in L^{1}. Does the same conclusion hold if $p=1$ and $q=\infty$?

Problem 3. Let H be a Hilbert space and suppose that $\left\{x_{n}\right\}$ is a sequence in H with the following property: for each $y \in H$,

$$
\sup _{n}\left|\left\langle x_{n}, y\right\rangle\right|<\infty .
$$

Prove that $\sup _{n}\left\|x_{n}\right\|<\infty$.

Problem 4. Suppose $1<p<q<r<\infty$. (Here p and q are arbitrary, not necessarily conjugate.) Prove that $L^{p}(\mathbb{R}) \cap L^{r}(\mathbb{R}) \subset L^{q}(\mathbb{R})$.

Problem 5. Let H be a Hilbert space, M a closed subspace of H, and $x \in H$. Prove that there is a unique point $y \in M$ which is closest to x.

Part B:

Problem 6. Let

$$
f(z)=1-\cos z .
$$

(i) Find all zeros of this function;
(ii) Find the multiplicities of these zeros.

Problem 7. Let

$$
f(z)=\sin \left(\frac{z}{z+1}\right) .
$$

(i) Determine all isolated singularities of f and their type;
(ii) Find the Laurent expansions of f at these singularities;
(iii) Find the residues of f at these singularities.

Problem 8. Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{x \cos x}{x^{2}-2 x+10} d x
$$

using the residue theorem.
Problem 9. Let n be a positive integer. Denote by V_{n} the linear space of all entire functions f such that there exists $C>0$ such that $|f(z)| \leq C|z|^{n}$ for all $z \in \mathbb{C}$.
(i) Describe precisely the functions in V_{n};
(ii) Find the dimension of V_{n}.

Problem 10. Using Rouché's theorem find the number of zeros of the polynomial $2 z^{5}-z^{3}+3 z^{2}-z+8$ in the region $\{z||z|>1\}$.

