Departement of Mathematics University of Utah Real and Complex Analysis Qualifying Exam

Instructions: Do seven problems, at least three from part A and three from part B. List the problems you have done on the front of your blue book.

Part A.

1. Let ℓ^1 be the Banach space of real sequences $a = (a_1, a_2, ...)$ with norm $||a||_1 = \sum_{i=1}^{\infty} |a_i| < \infty$, and ℓ^{∞} the Banach space of real sequences with norm $||x||_{\infty} = \sup_i |x_i|$.

Let $a \in \ell^1$ be a fixed sequence; for any sequence $x \in \ell^{\infty}$, define a new sequence $T_a(x)$ by

$$\left(T_a(x)\right)_n = \sum_{i=1}^n a_i x_i$$

- (a) Show that this defines a bounded operator $T_a: \ell^{\infty} \to \ell^{\infty}$.
- (b) Show $||T_a|| = ||a||_1$, where the left-hand side denotes the norm of the operator $T_a \colon \ell^{\infty} \to \ell^{\infty}$.
- 2. Let (\mathcal{M}, X, μ) be a **finite** positive measure space.
 - (a) Show that $L^2(X) \subset L^1(X)$, and that the inclusion $i: L^2(X) \subset L^1(X)$ has norm $||i|| = \sqrt{\mu(X)}$.
 - (b) Let $\mathcal{M}' \subset \mathcal{M}$ be the subset of measurable sets E with $\mu(E) > 0$. Show that if

$$L^1(X) = L^2(X),$$

then

$$\inf_{E\in\mathcal{M}'}\mu(E)>0.$$

3. Let H be a Hilbert space with inner product written as $\langle f, g \rangle$, and let $f, g \in H$ be two non-zero elements. Show that f = zg for some $z \in \mathbb{C}^*$ if and only there exists no $h \in H$ with

$$\langle f, h \rangle = 1$$
 and $\langle g, h \rangle = 0$.

4. Let $f: [0,1] \to \mathbb{R}_{\geq 0}$ be a measurable integrable function $f \in L^1([0,1])$ (with respect to the Lebesgue measure). Show that

$$\int_{[0,1]} xf(x)dx = \int_{[0,1]} \left(\int_{[y,1]} f(x)dx \right) dy$$

5. Let $T: C_0(\mathbb{R}) \to C_0(\mathbb{R})$ be the translation operator defined by (T.f)(x) = f(x+1). Show that there is no non-zero bounded linear functional $\Phi: C_0(\mathbb{R}) \to \mathbb{C}$ invariant under T, i.e. such that Φ satisfies

$$\Phi(f) = \Phi(Tf)$$

Part B. In the following, D and \overline{D} will denote the open and the closed unit disks, respectively.

6. Compute the integral

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 \, dx.$$

- 7. Let a be an isolated singularity of the meromorphic function $f : \Omega \to \mathbb{C}$. Prove that if a is an essential singularity, then in any neighborhood of a, the function f takes values arbitrarily close to any complex number.
- 8. Let $\alpha > 1$ be arbitrary. Show that the equation

$$\alpha - z - e^{-z} = 0$$

has exactly one solution in the half plane $\{z : \text{Re } z > 0\}$, and moreover, this solution is real.

9. Let $\Omega \subseteq \mathbb{C}$ be a simply connected region, and fix $z_0 \in \Omega$. If $\phi : \Omega \to D$ is a conformal map such that $\phi(z_0) = 0$, show that

$$|\phi'(z_0)| = \sup\{|f'(z_0)|: f: \Omega \to D \text{ holomorphic}, f(z_0) = 0\}.$$

10. Let f be a function holomorphic on D and continuous on \overline{D} . Assume that |f(z)| = 1 whenever |z| = 1. Show that f can be extended to a meromorphic function on the whole \mathbb{C} , with at most finitely many poles. (*Hint:* Starting with the Schwarz reflection principle for the upper half plane, deduce that an appropriate reflection continuation that can be used in this setting is $z \mapsto \frac{1}{f(1/\overline{z})}$.)