Departement of Mathematics University of Utah Real and Complex Analysis Qualifying Exam

Instructions: Do seven problems, at least three from part A and three from part B. List the problems you have done on the front of your blue book.

Part A.

1. Let ℓ^{1} be the Banach space of real sequences $a=\left(a_{1}, a_{2}, \ldots\right)$ with norm $\|a\|_{1}=\sum_{i=1}^{\infty}\left|a_{i}\right|<\infty$, and ℓ^{∞} the Banach space of real sequences with norm $\|x\|_{\infty}=\sup _{i}\left|x_{i}\right|$.
Let $a \in \ell^{1}$ be a fixed sequence; for any sequence $x \in \ell^{\infty}$, define a new sequence $T_{a}(x)$ by

$$
\left(T_{a}(x)\right)_{n}=\sum_{i=1}^{n} a_{i} x_{i}
$$

(a) Show that this defines a bounded operator $T_{a}: \ell^{\infty} \rightarrow \ell^{\infty}$.
(b) Show $\left\|T_{a}\right\|=\|a\|_{1}$, where the left-hand side denotes the norm of the operator $T_{a}: \ell^{\infty} \rightarrow \ell^{\infty}$.
2. Let (\mathcal{M}, X, μ) be a finite positive measure space.
(a) Show that $L^{2}(X) \subset L^{1}(X)$, and that the inclusion $i: L^{2}(X) \subset L^{1}(X)$ has norm $\|i\|=\sqrt{\mu(X)}$.
(b) Let $\mathcal{M}^{\prime} \subset \mathcal{M}$ be the subset of measurable sets E with $\mu(E)>0$. Show that if

$$
L^{1}(X)=L^{2}(X)
$$

then

$$
\inf _{E \in \mathcal{N}^{\prime}} \mu(E)>0
$$

3. Let H be a Hilbert space with inner product written as $\langle f, g\rangle$, and let $f, g \in$ H be two non-zero elements. Show that $f=z g$ for some $z \in \mathbb{C}^{*}$ if and only there exists no $h \in H$ with

$$
\langle f, h\rangle=1 \quad \text { and } \quad\langle g, h\rangle=0 .
$$

4. Let $f:[0,1] \rightarrow \mathbb{R}_{\geq 0}$ be a measurable integrable function $f \in L^{1}([0,1])$ (with respect to the Lebesgue measure). Show that

$$
\int_{[0,1]} x f(x) d x=\int_{[0,1]}\left(\int_{[y, 1]} f(x) d x\right) d y
$$

5. Let $T: C_{0}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})$ be the translation operator defined by $(T . f)(x)=$ $f(x+1)$. Show that there is no non-zero bounded linear functional $\Phi: C_{0}(\mathbb{R}) \rightarrow$ \mathbb{C} invariant under T, i.e. such that Φ satisfies

$$
\Phi(f)=\Phi(T f)
$$

Part B. In the following, D and \bar{D} will denote the open and the closed unit disks, respectively.
6. Compute the integral

$$
\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x
$$

7. Let a be an isolated singularity of the meromorphic function $f: \Omega \rightarrow \mathbb{C}$. Prove that if a is an essential singularity, then in any neighborhood of a, the function f takes values arbitrarily close to any complex number.
8. Let $\alpha>1$ be arbitrary. Show that the equation

$$
\alpha-z-e^{-z}=0
$$

has exactly one solution in the half plane $\{z: \operatorname{Re} z>0\}$, and moreover, this solution is real.

9 . Let $\Omega \subsetneq \mathbb{C}$ be a simply connected region, and fix $z_{0} \in \Omega$. If $\phi: \Omega \rightarrow D$ is a conformal map such that $\phi\left(z_{0}\right)=0$, show that

$$
\left|\phi^{\prime}\left(z_{0}\right)\right|=\sup \left\{\left|f^{\prime}\left(z_{0}\right)\right|: f: \Omega \rightarrow D \text { holomorphic, } f\left(z_{0}\right)=0\right\} .
$$

10. Let f be a function holomorphic on D and continuous on \bar{D}. Assume that $|f(z)|=1$ whenever $|z|=1$. Show that f can be extended to a meromorphic function on the whole \mathbb{C}, with at most finitely many poles.
(Hint: Starting with the Schwarz reflection principle for the upper half plane, deduce that an appropriate reflection continuation that can be used in this setting is $z \mapsto \frac{1}{f(1 / \bar{z})}$.)
