DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF UTAH
 REAL AND COMPLEX ANALYSIS EXAM

August 13, 2007

Instructions:. Do seven problems, at least three from part A and three from part B. List the problems you have done on the front of your blue book.

Part A.

1. Let f be integrable on \mathbf{R} with respect to Lebesgue measure, and define

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

Prove that F is continuous.
2. Assume that \mathbf{R} has the Lebesgue measure. Let $f \in L^{\infty}(\mathbf{R})$. For $g \in L^{2}(\mathbf{R})$ define

$$
M(g)=f g
$$

Prove that $M: L^{2}(\mathbf{R}) \rightarrow L^{2}(\mathbf{R})$ is a bounded linear operator, and that $\|M\|=\|f\|_{\infty}$.
3. Let H be a complex Hilbert space, and let $T: H \rightarrow H$ be a bounded self adjoint operator (so $T=T^{*}$).
a. Prove that if λ is an eigenvalue of T, then λ is real.
b. Show that eigenvectors corresponding to different eigenvalues are orthogonal.
c. Assume in addition that T is compact. Show that if $\left\{\lambda_{n}\right\}$ is a sequence of distinct eigenvalues with $\lambda_{n} \rightarrow \lambda$, then $\lambda=0$.
4. Let $f \in L^{1}([-\pi, \pi])$ and for $n \in \mathbf{Z}$ let c_{n} be the nth Fourier coefficient of f, that is

$$
c_{n}=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

Prove that $c_{n} \rightarrow 0$ as $|n| \rightarrow \infty$.
5. Let $I=[0,1]$ be the unit interval with the Lebesgue measure, and let $I \times I$ be endowed with the product measure. Assume that $K \in L^{2}(I \times I)$ and $f \in L^{2}(I)$. Define

$$
g(x)=\int_{0}^{1} K(x, y) f(y) d y
$$

Show that $g \in L^{2}(I)$.

Part B.

6. Let f be an entire function such that $|f(z)| \leq K|z|^{n}$ where K is a positive real constant and n is a positive integer. Show that f is a polynomial of degree $\leq n$.
7. Let $H=\{z \in \mathbf{C} \mid \Im z>0\}$ be the upper half plane and let $\Delta=\{z \in \mathbf{C}| | z \mid<1\}$ be the unit disk.
a. Find a conformal map from H to Δ that takes i to 0 .
b. Let $f: H \rightarrow H$ be a holomorphic map with $f(i)=i$. Show that $\left|f^{\prime}(i)\right| \leq 1$ and that if $\left|f^{\prime}(i)\right|=1$ then f is of the form $f(z)=\frac{a z+b}{c z+d}$ with $a, b, c, d \in \mathbf{R}$.
8. Let f be an entire function such that for all $x \in \mathbf{R}, f(i x)$ and $f(1+i x)$ are in \mathbf{R}. Show that f is periodic with period 2. That is show that $f(z)=f(z+2)$ for all $z \in \mathbf{C}$.
9. Let Ω be an open connected subset of \mathbf{C} and \mathcal{F} a family of holomorphic functions with domain Ω such that every compact subset K of Ω there is a positive real constant M_{K} such that for all $f \in \mathcal{F}$ and $z \in K$ we have $|f(z)|<M_{K}$. Show that for every $z \in \Omega$ there exists a positive constant B_{z} such that $\left|f^{\prime}(z)\right|<B_{z}$ for all $f \in \mathcal{F}$.
10. Calculate the integral

$$
\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+4} d x
$$

