Probability Qualifying Examination

January 7, 2011

There are 10 problems, of which you must turn in solutions for **exactly** 6 (your best 6, in your opinion). Each problem is worth 10 points, and 40 points is required for passing. On the outside of your exam book, indicate which 6 you have attempted.

If you think a problem is misstated, interpret it in such a way as to make it nontrivial.

1. Let X_1, X_2, \ldots be independent identically distributed random variables with characteristic function φ . Let N be a random variable with distribution

$$\mathbf{P}\{N=k\} = \frac{1}{2^k}, \quad k = 1, 2, \dots$$

It is assumed that $\{X_i, i \ge 1\}$ and N are independent.

(a) Compute the characteristic function of $Y = X_1 + \ldots X_N$.

(b) Can you weaken the condition that $\{X_i, i \ge 1\}$ and N are independent so that the formula obtained in part (a) remains true?

2. (a) Let Φ and ϕ be the standard normal distribution and density functions, respectively. Show that

$$\lim_{x \to \infty} \frac{1 - \Phi(x)}{(1/x)\phi(x)} = 1$$

(b) Let X_1, X_2, \ldots be independent identically distributed standard normal random variables. Show that

$$\limsup_{n \to \infty} \frac{1}{\sqrt{\log n}} |X_n| = c \quad \text{almost surely}$$

and compute the value of c.

3. Let X_1, \ldots, X_n be independent identically distributed random variables with $EX_1 = \mu$ and $0 < Var(X_1) = \sigma^2 < \infty$. Let

$$Y_n = \sum_{1 \le i < j \le n} X_i X_j.$$

Find numerical sequences a_n and b_n such that $(Y_n - a_n)/b_n$ has a nondegenerate limit distribution. 4. Let f be a continuous and bounded function on $[0,\infty)$. Compute

$$\lim_{n \to \infty} \int_0^\infty \cdots \int_0^\infty f\left(\frac{x_1 + \ldots + x_n}{n}\right) e^{-(x_1 + \ldots + x_n)} dx_1 \ldots x_n$$

5. Let X_1, \ldots, X_n be independent identically distributed Poisson random variables for each n with parameter λ_n .

(a) Show that $X_1 + \ldots + X_n$ is asymptotically normal if and only if $n\lambda_n \to \infty$.

(b) Can you weaken the condition that the X's are identically distributed for each n?

- 6. (a) Let X be a random variable with characteristic function φ . Show that X is symmetric if and only if $\varphi(t)$ is real for all t.
 - (b) Give three distinct examples of real characteristic functions.
- 7. Let X and Y be integrable random variables on (Ω, \mathcal{F}, P) , and let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . If X = Y on $G \in \mathcal{G}$, show that $E[X \mid \mathcal{G}] = E[Y \mid \mathcal{G}]$ a.s. on G.
- 8. Let Z_n be a Galton–Watson branching process with offspring distribution $\{p_k, k = 0, 1, 2, ...\}$ and $Z_0 = x$ (with x a positive integer), and let $f(\theta) = \sum p_k \theta^k$ be the associated pgf. Suppose that $\rho \in (0, 1)$ satisfies $f(\rho) = \rho$. Show that ρ^{Z_n} is a martingale, and use this to conclude that $P(Z_n = 0 \text{ for some } n \ge 0) = \rho^x$.
- 9. Let $X \ge 0$, $EX^2 < \infty$, and $0 \le a < EX$. Apply the Cauchy–Schwarz inequality to prove that $P(X > a) \ge (EX a)^2 / EX^2$.
- 10. By considering the Poisson distribution, show that

$$e^{-n}\left(1+n+\frac{n^2}{2!}+\cdots+\frac{n^n}{n!}\right) \to \frac{1}{2}$$

as $n \to \infty$.