Probability Prelim

January 7, 2010

There are 10 problems, of which you should turn in solutions for **exactly** 6 (your best 6). Each problem is worth 10 points, and 40 points is required for passing. On the outside of your exam book, indicate which 6 you have attempted.

If you think a problem is misstated, interpret it in such a way as to make it nontrivial.

- 1. In this problem, all random variables are nonnegative. We say that X is stochastically dominated by Y if $P\{X > a\} \leq P\{Y > a\}$ for all a > 0. Prove that if X is stochastically dominated by Y, then $E\Phi(X) \leq E\Phi(Y)$ for all increasing functions $\Phi : \mathbf{R}_+ \to \mathbf{R}_+$.
- 2. Suppose (Ω, \mathcal{F}, P) is a probability space, and $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ defines a filtration of sigma-algebras of subsets of \mathcal{F} .
 - (a) State, without proof, Doob's martingale convergence theorem.
 - (b) Prove that $\mathcal{L} := \lim_{n \to \infty} \operatorname{E}(Z | \mathcal{F}_n)$ exists almost surely and in $L^1(\mathbf{P})$ for all $Z \in L^1(\mathbf{P})$ [this is Lévy's martingale convergence theorem]. Identify the limit \mathcal{L} .
- 3. Suppose X_1, X_2, \ldots are independent, identically-distributed exponential random variables with mean $\lambda > 0$. Prove that

$$\max(X_1 \dots, X_n) - \frac{1}{\lambda} \ln n \Rightarrow X,$$

and compute $P\{X > x\}$ for all x > 0.

- 4. Give a rigorous proof that E[XY] = E[X]E[Y] if X and Y are independent random variables belonging to $L^1(P)$. In particular, show that $XY \in L^1(P)$.
- 5. Fix $n \ge 2$ and let X, Y_1, \ldots, Y_n be jointly distributed random variables. We say that Y_1, \ldots, Y_n are *conditionally i.i.d. given* X if

$$P(Y_1 \le y_1, ..., Y_n \le y_n \mid X) = P(Y_1 \le y_1 \mid X) \cdots P(Y_1 \le y_n \mid X)$$

for all y_1, \ldots, y_n . Show that, if Y_1, \ldots, Y_n are conditionally i.i.d. given X, then

$$Var(Y_1 + \dots + Y_n) = n^2 Var(Y_1) - n(n-1)E[Var(Y_1 \mid X)].$$

- 6. A random experiment has exactly three possible outcomes, referred to as outcomes 1, 2, and 3, with probabilities $p_1 > 0$, $p_2 > 0$, and $p_3 > 0$, where $p_1 + p_2 + p_3 = 1$. We consider a sequence of independent trials, at each of which the specified random experiment is performed. For i = 1, 2, let N_i be the number of trials needed for outcome i to occur, and put $N := \min(N_1, N_2)$.
 - (a) Show that N is independent of $1_{\{N_1 < N_2\}}$.
 - (b) Evaluate $E[N_1 | N_1 < N_2]$.
 - (c) Roll a pair of dice until a total of 6 or 7 appears. Given that 6 appears before 7, what is the (conditional) expected number of rolls?
- 7. If X is either (a) Poisson(λ) or (b) gamma(λ , 1) (density proportional to $x^{\lambda-1}e^{-x}, x > 0$), show that $(X E[X])/\sqrt{\operatorname{Var}(X)}$ converges in distribution to N(0, 1) as $\lambda \to \infty$ (λ need not be an integer).
- 8. Let X_1, X_2, \ldots be i.i.d. with mean μ and finite variance. Show that

$$U_n := \binom{n}{2}^{-1} \sum_{1 \le i < j \le n} X_i X_j$$

converges in probability to μ^2 as $n \to \infty$.

9. Let X_1, X_2, \ldots be i.i.d. with mean μ . Define $S_n := X_1 + \cdots + X_n$ for all $n \ge 1$. For fixed $n \ge 2$, define

$$M_1 := \frac{S_n}{n}, \quad M_2 := \frac{S_{n-1}}{n-1}, \quad \dots \quad M_n := \frac{X_1}{1}.$$

- (a) Show that $E[X_k | S_n] = S_n/n$ for $1 \le k \le n$.
- (b) Show that M_1, M_2, \ldots, M_n is a martingale.
- 10. Let Z be a random variable with all moments finite. Choose X and Y appropriately as in the Cauchy–Schwarz inequality or the Hölder inequality to prove that $f(p) := \ln \mathbb{E}[|Z|^p]$ is convex on $(0, \infty)$.