Probability Prelim

January 7, 2010

There are 10 problems, of which you should turn in solutions for exactly 6 (your best 6). Each problem is worth 10 points, and 40 points is required for passing. On the outside of your exam book, indicate which 6 you have attempted.

If you think a problem is misstated, interpret it in such a way as to make it nontrivial.

1. In this problem, all random variables are nonnegative. We say that X is stochastically dominated by Y if $\mathrm{P}\{X>a\} \leq \mathrm{P}\{Y>a\}$ for all $a>0$. Prove that if X is stochastically dominated by Y, then $\mathrm{E} \Phi(X) \leq \mathrm{E} \Phi(Y)$ for all increasing functions $\Phi: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$.
2. Suppose $(\Omega, \mathcal{F}, \mathrm{P})$ is a probability space, and $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \cdots$ defines a filtration of sigma-algebras of subsets of \mathcal{F}.
(a) State, without proof, Doob's martingale convergence theorem.
(b) Prove that $\mathcal{L}:=\lim _{n \rightarrow \infty} \mathrm{E}\left(Z \mid \mathcal{F}_{n}\right)$ exists almost surely and in $L^{1}(\mathrm{P})$ for all $Z \in L^{1}(\mathrm{P})$ [this is Lévy's martingale convergence theorem]. Identify the limit \mathcal{L}.
3. Suppose X_{1}, X_{2}, \ldots are independent, identically-distributed exponential random variables with mean $\lambda>0$. Prove that

$$
\max \left(X_{1} \ldots, X_{n}\right)-\frac{1}{\lambda} \ln n \Rightarrow X
$$

and compute $\mathrm{P}\{X>x\}$ for all $x>0$.
4. Give a rigorous proof that $\mathrm{E}[X Y]=\mathrm{E}[X] \mathrm{E}[Y]$ if X and Y are independent random variables belonging to $L^{1}(\mathrm{P})$. In particular, show that $X Y \in$ $L^{1}(\mathrm{P})$.
5. Fix $n \geq 2$ and let X, Y_{1}, \ldots, Y_{n} be jointly distributed random variables. We say that Y_{1}, \ldots, Y_{n} are conditionally i.i.d. given X if

$$
\mathrm{P}\left(Y_{1} \leq y_{1}, \ldots, Y_{n} \leq y_{n} \mid X\right)=\mathrm{P}\left(Y_{1} \leq y_{1} \mid X\right) \cdots \mathrm{P}\left(Y_{1} \leq y_{n} \mid X\right)
$$

for all y_{1}, \ldots, y_{n}. Show that, if Y_{1}, \ldots, Y_{n} are conditionally i.i.d. given X, then

$$
\operatorname{Var}\left(Y_{1}+\cdots+Y_{n}\right)=n^{2} \operatorname{Var}\left(Y_{1}\right)-n(n-1) \mathrm{E}\left[\operatorname{Var}\left(Y_{1} \mid X\right)\right]
$$

6. A random experiment has exactly three possible outcomes, referred to as outcomes 1,2 , and 3 , with probabilities $p_{1}>0, p_{2}>0$, and $p_{3}>0$, where $p_{1}+p_{2}+p_{3}=1$. We consider a sequence of independent trials, at each of which the specified random experiment is performed. For $i=1,2$, let N_{i} be the number of trials needed for outcome i to occur, and put $N:=\min \left(N_{1}, N_{2}\right)$.
(a) Show that N is independent of $1_{\left\{N_{1}<N_{2}\right\}}$.
(b) Evaluate E[$\left.N_{1} \mid N_{1}<N_{2}\right]$.
(c) Roll a pair of dice until a total of 6 or 7 appears. Given that 6 appears before 7 , what is the (conditional) expected number of rolls?
7. If X is either (a) Poisson (λ) or (b) gamma $(\lambda, 1)$ (density proportional to $\left.x^{\lambda-1} e^{-x}, x>0\right)$, show that $(X-E[X]) / \sqrt{\operatorname{Var}(X)}$ converges in distribution to $N(0,1)$ as $\lambda \rightarrow \infty$ (λ need not be an integer).
8. Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and finite variance. Show that

$$
U_{n}:=\binom{n}{2}^{-1} \sum_{1 \leq i<j \leq n} X_{i} X_{j}
$$

converges in probability to μ^{2} as $n \rightarrow \infty$.
9. Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ. Define $S_{n}:=X_{1}+\cdots+X_{n}$ for all $n \geq 1$. For fixed $n \geq 2$, define

$$
M_{1}:=\frac{S_{n}}{n}, \quad M_{2}:=\frac{S_{n-1}}{n-1}, \quad \ldots \quad M_{n}:=\frac{X_{1}}{1}
$$

(a) Show that $\mathrm{E}\left[X_{k} \mid S_{n}\right]=S_{n} / n$ for $1 \leq k \leq n$.
(b) Show that $M_{1}, M_{2}, \ldots, M_{n}$ is a martingale.
10. Let Z be a random variable with all moments finite. Choose X and Y appropriately as in the Cauchy-Schwarz inequality or the Hölder inequality to prove that $f(p):=\ln \mathrm{E}\left[|Z|^{p}\right]$ is convex on $(0, \infty)$.

