Probability Qualifying Examination

January 8, 2009

There are 10 problems, of which you should turn in solutions for exactly 6 (your best 6 , in your opinion). Each problem is worth 10 points, and 40 points is required for passing. On the outside of your exam book, indicate which 6 you have attempted.

If you think a problem is misstated, interpret it in such a way as to make it nontrivial.

1. Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}, and put $S_{0}:=0$ and $S_{n}:=X_{1}+\cdots+X_{n}$ for each $n \geq 1$. Let N be a nonnegative-integer-valued random variable independent of X_{1}, X_{2}, \ldots. Find the mean and variance of S_{N} by conditioning on N.
2. (a) Find a closed-form expression (i.e., one with no summation sign) for $\mathrm{E}\left[(X+1)^{-1}\right]$ when X is $\operatorname{binomial}(n, p)$ with $n \geq 1$ and $0<p<1$.
(b) Find a closed-form expression for $\mathrm{E}\left[(X+1)^{-1}\right]$ when X is $\operatorname{Poisson}(\lambda)$ with $\lambda>0$. You may use the result of part (a) here.

3 . For $n=1,2, \ldots$, let X_{n} have density

$$
f_{n}(x):=\frac{n}{\pi\left(1+n^{2} x^{2}\right)}, \quad-\infty<x<\infty
$$

(a) Does X_{n} converge to 0 in probability?
(b) Does X_{n} converge to 0 in $L^{1}(\mathrm{P})$?
(c) If X_{1}, X_{2}, \ldots are independent, does X_{n} converge to 0 a.s.?
4. Let $X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}$ be independent $N(0,1)$ random variables. Let P_{1}, P_{2}, and P_{3} be the points in the plane with coordinates $\left(X_{1}, Y_{1}\right)$, $\left(X_{2}, Y_{2}\right)$, and $\left(X_{3}, Y_{3}\right)$. Let M be the midpoint of the segment $P_{1} P_{2}$ and let r be half its length. Show that the probability that the point P_{3} lies within the circle of radius r centered at M is equal to $1 / 4$.
5. Let X_{1}, X_{2}, \ldots be an i.i.d. sequence of integer-valued random variables, and let λ_{0} be a root of the equation $\mathrm{E}\left[\lambda^{X_{1}}\right]=1$. (If λ_{0} is complex, it suffices to notice that expectations, conditional expectations, and martingales extend easily to complex-valued random variables.) Let $S_{n}:=X_{1}+\cdots+X_{n}$ and $M_{n}:=\lambda_{0}^{S_{n}}$ for each $n \geq 0$, where $S_{0}:=0$.
(a) Show that $\left\{M_{n}\right\}_{n \geq 0}$ is a martingale with respect to $\mathcal{F}_{n}:=\sigma\left(X_{1}, \ldots, X_{n}\right)$.
(b) Consider the special case that $\mathrm{P}\left\{X_{1}=1\right\}=p$ and $\mathrm{P}\left\{X_{1}=-1\right\}=$ $1-p$, where $0<p<1$. Show that, in this case, $\lim _{n \rightarrow \infty} M_{n}$ exists a.s. and is finite.
(c) Find another example to show that $\lim _{n \rightarrow \infty} M_{n}$ need not exist a.s.
6. Suppose $X_{n} \Rightarrow X$ as $n \rightarrow \infty$, and $\sup _{n \geq 1} \mathrm{E}\left(X_{n}^{2}\right)<\infty$. Prove that $X \in L^{1}(\mathrm{P})$ and $\lim _{n \rightarrow \infty} \mathrm{E} X_{n}=\mathrm{E} X$.
7. Choose and fix a sequence of real numbers a_{1}, a_{2}, \ldots such that: (i) $0<$ $a_{k}<1$ for all $k \geq 1$; and (ii) $\sum_{k=1}^{\infty} a_{k}^{2}=\infty$. Let X_{1}, X_{2}, \ldots be independent random variables, where each X_{k} is distributed uniformly on $\left(-a_{k}, a_{k}\right)$. Prove that $n^{-1 / 2}\left(X_{1}+\cdots+X_{n}\right)$ converges weakly to $N\left(0, \sigma^{2}\right)$ and compute σ.
8. Suppose f is a probability density function on \mathbf{R}, and define for all $x, y \in$ R,

$$
g(x, y):= \begin{cases}2 f(x) f(y) & \text { if } x \leq y \\ 0 & \text { otherwise }\end{cases}
$$

(a) Prove that g is the probability density function of some random variable (X, Y) which takes values in \mathbf{R}^{2}.
(b) Are X and Y independent? Prove or disprove.
9. Suppose X_{1}, X_{2}, \ldots are independent, identically-distributed random variables such that

$$
\mathrm{P}\left\{X_{1}>x\right\}= \begin{cases}x^{-\alpha} & \text { if } x \geq 1 \\ 1 & \text { if } x<1\end{cases}
$$

where $\alpha>0$ is fixed. Prove that

$$
n^{-1 / \alpha} \max \left(X_{1}, \ldots, X_{n}\right) \Rightarrow X
$$

and compute $\mathrm{P}\{X>x\}$ for all $x \in \mathbf{R}$.
10. Let α, λ be fixed, strictly positive, and finite. The $\operatorname{Gamma}(\alpha, \lambda)$ density function is

$$
f(x):= \begin{cases}\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-\lambda x}, & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

where $\Gamma(\alpha):=\int_{0}^{\infty} t^{\alpha-1} \mathrm{e}^{-t} \mathrm{~d} t$. This defines a probability density function.
(a) Compute the characteristic function of f.
(b) Suppose X_{1}, \ldots, X_{n} are independent with common density Gamma(1, λ). Prove that $S_{n}:=X_{1}+\cdots+X_{n}$ has a Gamma density; also compute its paramaters.
(c) Compute $\mathrm{P}\left\{S_{n}<k<S_{n+1}\right\}$ for all integers $k \geq 1$.

