Probability Qualifying Examination

January 8, 2009

There are 10 problems, of which you should turn in solutions for **exactly** 6 (your best 6, in your opinion). Each problem is worth 10 points, and 40 points is required for passing. On the outside of your exam book, indicate which 6 you have attempted.

If you think a problem is misstated, interpret it in such a way as to make it nontrivial.

- 1. Let X_1, X_2, \ldots be i.i.d. with mean μ and variance σ^2 , and put $S_0 := 0$ and $S_n := X_1 + \cdots + X_n$ for each $n \ge 1$. Let N be a nonnegative-integer-valued random variable independent of X_1, X_2, \ldots Find the mean and variance of S_N by conditioning on N.
- 2. (a) Find a closed-form expression (i.e., one with no summation sign) for $E[(X+1)^{-1}]$ when X is binomial(n, p) with $n \ge 1$ and 0 .
 - (b) Find a closed-form expression for $E[(X+1)^{-1}]$ when X is $Poisson(\lambda)$ with $\lambda > 0$. You may use the result of part (a) here.
- 3. For $n = 1, 2, \ldots$, let X_n have density

$$f_n(x) := \frac{n}{\pi(1 + n^2 x^2)}, \qquad -\infty < x < \infty.$$

- (a) Does X_n converge to 0 in probability?
- (b) Does X_n converge to 0 in $L^1(\mathbf{P})$?
- (c) If X_1, X_2, \ldots are independent, does X_n converge to 0 a.s.?
- 4. Let $X_1, X_2, X_3, Y_1, Y_2, Y_3$ be independent N(0, 1) random variables. Let P_1, P_2 , and P_3 be the points in the plane with coordinates (X_1, Y_1) , (X_2, Y_2) , and (X_3, Y_3) . Let M be the midpoint of the segment P_1P_2 and let r be half its length. Show that the probability that the point P_3 lies within the circle of radius r centered at M is equal to 1/4.
- 5. Let X_1, X_2, \ldots be an i.i.d. sequence of integer-valued random variables, and let λ_0 be a root of the equation $\mathbb{E}[\lambda^{X_1}] = 1$. (If λ_0 is complex, it suffices to notice that expectations, conditional expectations, and martingales extend easily to complex-valued random variables.) Let $S_n := X_1 + \cdots + X_n$ and $M_n := \lambda_0^{S_n}$ for each $n \ge 0$, where $S_0 := 0$.

- (a) Show that $\{M_n\}_{n\geq 0}$ is a martingale with respect to $\mathcal{F}_n := \sigma(X_1, \ldots, X_n)$.
- (b) Consider the special case that $P\{X_1 = 1\} = p$ and $P\{X_1 = -1\} = 1 p$, where $0 . Show that, in this case, <math>\lim_{n\to\infty} M_n$ exists a.s. and is finite.
- (c) Find another example to show that $\lim_{n\to\infty} M_n$ need not exist a.s.
- 6. Suppose $X_n \Rightarrow X$ as $n \to \infty$, and $\sup_{n \ge 1} E(X_n^2) < \infty$. Prove that $X \in L^1(\mathbb{P})$ and $\lim_{n \to \infty} EX_n = EX$.
- 7. Choose and fix a sequence of real numbers a_1, a_2, \ldots such that: (i) $0 < a_k < 1$ for all $k \ge 1$; and (ii) $\sum_{k=1}^{\infty} a_k^2 = \infty$. Let X_1, X_2, \ldots be independent random variables, where each X_k is distributed uniformly on $(-a_k, a_k)$. Prove that $n^{-1/2}(X_1 + \cdots + X_n)$ converges weakly to $N(0, \sigma^2)$ and compute σ .
- 8. Suppose f is a probability density function on \mathbf{R} , and define for all $x, y \in \mathbf{R}$,

$$g(x,y) := \begin{cases} 2f(x)f(y) & \text{if } x \le y, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Prove that g is the probability density function of some random variable (X, Y) which takes values in \mathbb{R}^2 .
- (b) Are X and Y independent? Prove or disprove.
- 9. Suppose X_1, X_2, \ldots are independent, identically-distributed random variables such that

$$P\{X_1 > x\} = \begin{cases} x^{-\alpha} & \text{if } x \ge 1, \\ 1 & \text{if } x < 1, \end{cases}$$

where $\alpha > 0$ is fixed. Prove that

$$n^{-1/\alpha} \max(X_1, \dots, X_n) \Rightarrow X,$$

and compute $P\{X > x\}$ for all $x \in \mathbf{R}$.

10. Let α, λ be fixed, strictly positive, and finite. The Gamma (α, λ) density function is

$$f(x) := \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-\lambda x}, & \text{if } x > 0, \\ 0 & \text{if } x \le 0, \end{cases}$$

where $\Gamma(\alpha) := \int_0^\infty t^{\alpha-1} e^{-t} dt$. This defines a probability density function.

- (a) Compute the characteristic function of f.
- (b) Suppose X_1, \ldots, X_n are independent with common density Gamma $(1, \lambda)$. Prove that $S_n := X_1 + \cdots + X_n$ has a Gamma density; also compute its parameters.
- (c) Compute $P\{S_n < k < S_{n+1}\}$ for all integers $k \ge 1$.