Probability Prelim

January 3, 2008

There are 10 problems, of which you should turn in solutions for 6 (your best 6). Each problem is worth 10 points, and 40 points is required for passing.

1. Let X and Y have joint density

$$
f(x, y)=g\left(\sqrt{x^{2}+y^{2}}\right), \quad(x, y) \in \mathbf{R}^{2}
$$

for some function g. Show that $Z=X / Y$ has a Cauchy density.
2. (a) State the central limit theorem as well as Kolmogorov's 0-1 law.
(b) For arbitrary events $A_{n}, n \geq 1$, show that $\inf _{n \geq 1} P\left(A_{n}\right)>0$ implies $P\left(A_{n}\right.$ i.o. $)>0$.
(c) Let X_{1}, X_{2}, \ldots be i.i.d. mean 0 , variance 1 random variables, and put $S_{n}=X_{1}+\cdots+X_{n}$ for each $n \geq 1$. Show that $\lim \sup _{n \rightarrow \infty} S_{n}=\infty$ a.s.
3. Construct three random variables X, Y, Z such that

$$
E[E[X \mid Y] \mid Z] \neq E[E[X \mid Z] \mid Y]
$$

with positive probability.
4. Let X_{1}, X_{2}, \ldots be a sequence of integrable random variables defined on the same probability space. Show that $\left\{X_{n}\right\}_{n \geq 1}$ is a submartingale if and only if $E\left[X_{T}\right] \geq E\left[X_{1}\right]$ for all bounded stopping times T. (Take the filtration to be the natural one, $\mathscr{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.)
5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. positive random variables. Show that

$$
E\left[\frac{\sum_{i=1}^{m} X_{i}}{\sum_{i=1}^{n} X_{i}}\right]=\frac{m}{n}, \quad 1 \leq m \leq n
$$

6. Suppose $X_{1, n}, X_{2, n}, \ldots$ are i.i.d. with $P\left\{X_{1, n}=j\right\}=1 / n$ for $j=1, \ldots, n$. Prove that if

$$
T_{n}:=\inf \left\{k \geq 1: X_{1, n}+\cdots+X_{k, n}>n\right\}
$$

then $\lim _{n \rightarrow \infty} P\left\{T_{n}=k\right\}$ exists for all $k \geq 1$. Compute that limit.
7. Let X_{1}, X_{2}, \ldots be i.i.d. mean 0 , variance 1 random variables and $S_{n}=$ $X_{1}+\cdots+X_{n}$ for each $n \geq 1$. Show directly that the characteristic function of S_{n} / \sqrt{n} converges pointwise to the characteristic function of the standard normal distribution. Notice that this is a key step in the proof of the central limit theorem, so you are not allowed to use the central limit theorem in your derivation.
8. Let X_{1}, X_{2}, \ldots be i.i.d. with $P\left(X_{1}>x\right)=e^{-x}, x>0$. Prove that $\lim \sup _{n \rightarrow \infty} X_{n} / \ln n=1$ a.s.
9. Let X and Y be independent, each having the standard normal distribution, and let (R, Θ) be the polar coordinates for (X, Y).
(a) Show that $X+Y$ and $X-Y$ are independent, and that $R^{2}=[(X+$ $\left.Y)^{2}+(X-Y)^{2}\right] / 2$, and conclude that the conditional distribution of R^{2} given $X-Y$ is the chi-squared with one degree of freedom translated by $(X-Y)^{2} / 2$.
(b) Show that the conditional distribution of R^{2} given Θ is chi-squared with two degrees of freedom.
(c) If $X-Y=0$, the conditional distribution of R^{2} is chi-squared with one degree of freedom. If $\Theta=\pi / 4$ or $\Theta=5 \pi / 4$, the conditional distribution of R^{2} is chi-squared with two degrees of freedom. But the events $\{X-Y=0\}$ and $\{\Theta=\pi / 4\} \cup\{\Theta=5 \pi / 4\}$ are the same. Resolve the apparent contradiction.
10. Show that the number of fixed points in a random permutation of length n is asymptotically Poisson with mean 1. Hint: Use characteristic functions. Write $e^{i t 1_{A}}$ as $1+\left(e^{i t}-1\right) 1_{A}$.

