Probability Prelim Exam

August 2014

Read the following instructions before you begin:

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for at most 6 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam problems begin here:

1. Let X_{1}, X_{2}, \ldots be independent random variables with 2 finite moments, and $\sum_{j=1}^{\infty} \operatorname{Var}\left(X_{j}\right)<\infty$. Prove that $\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left(X_{j}-\mathrm{E} X_{j}\right)$ exists a.s. and in $L^{2}(\mathrm{P})$.
2. Suppose $\left\{X_{n}\right\}_{n=1}^{\infty}$ and $\left\{Y_{n}\right\}_{n=1}^{\infty}$ are submartingales with respect to the same filtration $\left\{\mathscr{F}_{n}\right\}_{n=1}^{\infty}$. Prove that $Z_{n}:=\max \left(X_{n}, Y_{n}\right)$ is also a submartingale.
3. Suppose $X=\operatorname{Poisson}(\lambda)$ for some $\lambda>0$. Prove that $\mathrm{P}\{X>\mathrm{e} \lambda\} \leqslant$ $e^{-\lambda}$.
4. Suppose $\left\{X_{j}\right\}_{j=0}^{\infty}$ is a martingale such that $X_{0}=0$ and $\left|X_{i+1}-X_{i}\right| \leqslant 1$ for all $i \geqslant 0$. Prove that $\lim _{n \rightarrow \infty} n^{-\delta} X_{n}=0$, a.s. for every $\delta>1 / 2$.
5. Let X_{1}, X_{2}, \ldots be independent, identically distributed random variables with the following common distribution:

$$
\mathrm{P}\left\{X_{1}=k\right\}=\frac{3}{\pi^{2} k^{2}} \quad \text { for } k= \pm 1, \pm 2, \ldots
$$

(a) Prove that $\operatorname{Eexp}\left(i t X_{1}\right)=1-(3|t| / \pi)+o(|t|)$ as $t \rightarrow 0$.

You may use, without proof, the fact that $\int_{0}^{\infty}(1-\cos \theta) \theta^{-2} \mathrm{~d} \theta=$ $\pi / 2$.
(b) Use the preceding in order to prove that $n^{-1}\left(X_{1}+\cdots+X_{n}\right)$ converges weakly to a "Cauchy random variable Y with scale parameter $3 / \pi$." That is, the characteristic function of Y is

$$
\mathrm{E} \exp (i t Y)=\exp (-3|t| / \pi) \quad \text { for all } t \in \mathbf{R}
$$

You may use, without proof, the fact that the latter is a characteristic function. This matter is the topic of Problem 8 below.
6. Let X_{1}, X_{2}, \ldots be i.i.d. integer-valued random variables with probability mass function $f(a):=\mathrm{P}\left\{X_{1}=a\right\}$ for all $a \in \mathbf{Z}$, and suppose $f(a)>0$ for all $a \in \mathbf{Z}$. Now let g be another probability mass function on \mathbf{Z} and define the likelihood ratio,

$$
\Lambda_{n}:=\prod_{j=1}^{n} \frac{g\left(X_{j}\right)}{f\left(X_{j}\right)}
$$

(a) Consider the \log-likelihood $\log \Lambda_{n}$, where " \log " denotes the natural logarithm. Prove that $\lim _{n \rightarrow \infty} n^{-1} \log \Lambda_{n}=\mathbb{D}(g \| f)$ a.s., where

$$
\mathbb{D}(g \| f):=\sum_{a=-\infty}^{\infty} f(a) \log \left[\frac{g(a)}{f(a)}\right],
$$

provided that $\mathbb{E}(g \| f):=\sum_{a=-\infty}^{\infty}|\log [g(a) / f(a)]| f(a)<\infty$.
(b) Verify that $\log x \leqslant x-1$ for all $x>0$, and that the inequality is strict except when $x=1$. Use this to prove the following [Gibbs' inequality $]: \mathbb{D}(g \| f)<0$.
(c) Conclude from the preceding that if $\mathbb{E}(g \| f)<\infty$, then $\Lambda_{n} \rightarrow 0$ a.s. very rapidly as $n \rightarrow \infty$.

This fact plays an important role in statistics.
7. Suppose $f:[0, \infty) \rightarrow \mathbf{R}$ is bounded and measurable, and $f(x)=0$ for all $x \geqslant 2$.
(a) Prove that if X_{1}, X_{2}, \ldots are independent, all distributed uniformly in the interval $(0,1)$, then

$$
\frac{1}{n} \sum_{j=0}^{n} f\left(\frac{j+X_{j}}{n}\right) \xrightarrow{\mathrm{P}} \int_{0}^{\infty} f(x) \mathrm{d} x \quad \text { as } n \rightarrow \infty
$$

(b) (Extra credit) Deduce from this the following version of Riemann sums for Lebesgue integrals [Chaterjee's theorem]: There exists a sequence $\left\{\delta_{j, n} ; 0 \leqslant j \leqslant n, n \geqslant 1\right\}$ of real numbers in $(0,1)$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n} f\left(\frac{j+\delta_{j, n}}{n}\right)=\int_{0}^{\infty} f(x) \mathrm{d} x
$$

8. Let f be a continuous element of $L^{1}(\mathbf{R})$, and recall that its Fourier transform is $\hat{f}(t):=\int_{-\infty}^{\infty} \exp (i t x) f(x) \mathrm{d} x$.
(a) Suppose also that $\hat{f} \in L^{1}(\mathbf{R})$. Prove the following [inversion formula]:

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{-i x t} \hat{f}(t) \mathrm{d} t \quad \text { for all } x \in \mathbf{R}
$$

In other words, $\widehat{\hat{f}}(-x)=2 \pi f(x)$ for all $x \in \mathbf{R}$.
(b) Choose and fix some $\theta>0$. Use the preceding to prove that the Fourier transform of the probability density function

$$
f(x):=\frac{\theta}{\pi\left(\theta^{2}+x^{2}\right)} \quad[-\infty<x<\infty]
$$

is $\hat{f}(t)=\exp (-\theta|t|)$.
9. Suppose X and Y are i.i.d. random variables and f and g are nondecreasing, bounded and measurable functions on \mathbf{R}.
(a) Prove that $\mathrm{E}[(f(X)-f(Y))(g(X)-g(Y))] \geqslant 0$.
(b) Conclude that $f(X)$ and $g(X)$ are always positively correlated; i.e., $\mathrm{E}[f(X) g(X)] \geqslant \mathrm{E}[f(X)] \cdot \mathrm{E}[g(X)]$.
10. Let $Z=\mathrm{N}(0,1)$ denote a standard normal random variable. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuously differentiable and there exists $c>1$ such that $|f(x)|+\left|f^{\prime}(x)\right| \leqslant c \exp (c|x|)$ for all $x \in \mathbf{R}$. Derive the following [Stein's differential equation $]: \mathrm{E}\left[f^{\prime}(Z)\right]=\mathrm{E}[Z f(Z)]$.

