Probability Prelim Exam

August 2013

Read the following instructions before you begin:

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for at most 6 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam problems begin here:

Throughout, $(\Omega, \mathcal{F}, \mathrm{P})$ denotes the underlying probability space.

1. Let X, X_{1}, X_{2}, \ldots be independent random variables, all distributed according to the standard normal distribution.
(a) Prove that there exist finite constants $c_{1}, c_{2}, x_{0}>0$, such that

$$
\frac{c_{1}}{x} \mathrm{e}^{-x^{2} / 2} \leqslant \mathrm{P}\{X>x\} \leqslant \frac{c_{2}}{x} \mathrm{e}^{-x^{2} / 2} \quad \text { for all } x \geqslant x_{0}
$$

(b) Use the inequalities of part (a) in order to prove that if X_{1}, X_{2}, \ldots are independent standard normal random variables then

$$
\limsup _{n \rightarrow \infty} \frac{X_{n}}{\sqrt{2 \ln n}}=-\liminf _{n \rightarrow \infty} \frac{X_{n}}{\sqrt{2 \ln n}}=1 \quad \text { a.s. }
$$

2. Let X_{1}, X_{2}, \ldots be i.i.d. with $\mathrm{P}\left\{X_{1}=1\right\}=1 / 4$ and $\mathrm{P}\left\{X_{1}=0\right\}=3 / 4$. Let N denote the smallest integer $k \geqslant 2$ such that $X_{k-1}=0,=X_{k}=1$; that is, N is the first time the pattern " 01 " occurs in the infinite sequence X_{1}, X_{2}, \ldots Compute $\mathrm{E}(N)$.
3. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. random variables, and $1 \leqslant X_{1} \leqslant 2$ a.s. Compute, for every $1 \leqslant i \leqslant j \leqslant n$, the quantity

$$
\mathrm{E}\left(\frac{X_{i}+\cdots+X_{j}}{X_{1}+\cdots+X_{n}}\right)
$$

4. Suppose μ is a probability measure on the Borel subsets of $(0,1)$ such that $\int|\ln (x)| \mu(\mathrm{d} x)<\infty$. Prove that

$$
I(n):=\left(\int x^{1 / n} \mu(\mathrm{~d} x)\right)^{n} \rightarrow \exp \left(\int \ln (x) \mu(\mathrm{d} x)\right) \quad \text { as } n \rightarrow \infty .
$$

[Hint: $I(n)=\mathrm{E}\left(\prod_{j=1}^{n} X_{j}^{1 / n}\right)$, where X_{1}, \ldots, X_{n} are i.i.d.]
5. Let $\boldsymbol{X}_{n}:=\left(X_{1, n}, \ldots, X_{d, n}\right)$ be a random variable in \mathbf{R}^{d} for every $n \geqslant 1$. Let $\boldsymbol{Y}:=\left(Y_{1}, \ldots, Y_{d}\right)$ be another random variable in \mathbf{R}^{d}. Prove that $\boldsymbol{X}_{n} \Rightarrow \boldsymbol{Y}$ if and only if the 1-dimensional random variable $\sum_{i=1}^{d} \lambda_{i} X_{i, n}$ converges weakly to $\sum_{i=1}^{d} \lambda_{i} Y_{i}$ for every $\boldsymbol{\lambda}:=\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \mathbf{R}^{d}$.
6. For every random vector (X, Y) in \mathbf{R}^{2} we can define a function \mathscr{Q} of two variables as follows:

$$
\mathscr{Q}(a, b):=\mathrm{P}\{X>a, Y>b\}-\mathrm{P}\{X>a\} \mathrm{P}\{Y>b\} .
$$

(a) Suppose $f, g: \mathbf{R} \rightarrow \mathbf{R}$ are bounded and have integrable, bounded, and continuous derivatives. Then prove that

$$
\mathrm{E}[f(X) g(Y)]-\mathrm{E}[f(X)] \mathrm{E}[g(Y)]=\iint_{\mathbf{R}^{2}} \mathscr{Q}(a, b) f^{\prime}(a) g^{\prime}(b) \mathrm{d} a \mathrm{~d} b
$$

(b) Suppose $\mathscr{Q}(a, b) \geqslant 0$ for all $a, b \in \mathbf{R}$. Prove that if X and Y have two finite moments, then $\operatorname{Cov}(X, Y) \geqslant 0$ and there exists a finite constant α, depending only on f and g, such that

$$
|\mathrm{E}[f(X) g(Y)]-\mathrm{E}[f(X)] \mathrm{E}[g(Y)]| \leqslant \alpha \operatorname{Cov}(X, Y)
$$

[In other words, if $\mathscr{Q} \geqslant 0$ and X and Y have a small covariance, then X and Y are almost independent.]
7. Suppose that, for every integer $n \geqslant 1, X(n)$ has a Gamma distribution with parameters $n+1$ and 1 ; that is, the probability density function of $X(n)$ is

$$
f_{n}(x):=\frac{x^{n} \mathrm{e}^{-x}}{n!} \mathbf{1}_{(0, \infty)}(x)
$$

(a) Compute $\mathrm{E}(X(n))$ and $\operatorname{Var}(X(n))$ for every integer $n \geqslant 1$.
(b) Prove that, as $n \rightarrow \infty$,

$$
\frac{X(n)-n}{\sqrt{n}} \Rightarrow \mathrm{~N}(0,1)
$$

8. Let $\{W(t)\}_{t \geqslant 0}$ be a standard Brownian motion, and define

$$
U(t):=\mathrm{e}^{-t / 2} W\left(\mathrm{e}^{t}\right) \quad \text { for all } t \geqslant 0
$$

(a) Prove that $\{U(t)\}_{t \geqslant 0}$ is Gaussian process; compute its mean and covariance functions.
(b) Prove that

$$
\limsup _{t \rightarrow \infty} \frac{U(t)}{\sqrt{2 \ln t}}=-\liminf _{t \rightarrow \infty} \frac{U(t)}{\sqrt{2 \ln t}}=1 \quad \text { a.s. }
$$

9. Let X be an integer-valued random variable that is non-degenerate; this means that there exist at least two integers n, m such that $\mathrm{P}\{X=n\}$ and $\mathrm{P}\{X=m\}$ are both strictly positive. Prove that the set

$$
\mathcal{V}:=\left\{t \in \mathbf{R}:\left|\mathrm{E}\left[\mathrm{e}^{i t X}\right]\right|=1\right\}
$$

has zero Lebesgue measure. [Hint: If $t \in \mathcal{V}$ then $Z:=\mathrm{e}^{i t(X-Y)}$ has mean one, where Y is an independent copy of X. Proceed by proving that $\mathrm{E}\left(|Z-1|^{2}\right)=0$.]
10. Consider i.i.d. X_{1}, X_{2}, \ldots that are strictly positive, and define

$$
S_{n}:=\sqrt{X_{1}+\sqrt{X_{2}+\sqrt{X_{3}+\sqrt{\cdots+\sqrt{X_{n}}}}}} \quad \text { for all } n \geqslant 1
$$

In other words, if $f(a, b):=\sqrt{a+\sqrt{b}}$ for all $a, b>0$, then $S_{1}:=f\left(X_{1}, 0\right)$ and $S_{k+1}:=f\left(S_{k}, X_{k+1}\right)$ for all $k \geqslant 0$.
Prove that $\lim _{n \rightarrow \infty} S_{n}$ exists a.s. and is finite a.s.

