Probability Qualifying Examination

August 17, 2010

There are 10 problems, of which you must turn in solutions for **exactly** 6 (your best 6, in your opinion). Each problem is worth 10 points, and 40 points is required for passing. On the outside of your exam book, indicate which 6 you have attempted.

If you think a problem is misstated, interpret it in such a way as to make it nontrivial.

1. Let X_1, X_2, \ldots be independent identically distributed random variables with characteristic function φ . Let N be a random variable with distribution

$$P{N = k} = \frac{1}{2^k}, \quad k = 1, 2, \dots$$

It is assumed that $\{X_i, i \geq 1\}$ and N are independent.

- (a) Compute the characteristic function of $Y = X_1 + \dots X_N$.
- (b) Can you weaken the condition that $\{X_i, i \geq 1\}$ and N are independent so that the formula obtained in part (a) remains true?
- 2. Let X_1, X_2, \ldots be independent identically distributed standard normal random variables. Show that

$$\limsup_{n \to \infty} \frac{1}{\sqrt{\log n}} |X_n| = c \quad \text{almost surely}$$

and compute the value of c.

3. Let X_1, \ldots, X_n be independent identically distributed random variables with $\mathrm{E} X_1 = \mu$ and $0 < \mathrm{Var}(X_1) = \sigma^2 < \infty$. Let

$$Y_n = \sum_{1 \le i < j \le n} X_i X_j.$$

Find numerical sequences a_n and b_n such that $(Y_n - a_n)/b_n$ has a non-degenerate limit distribution.

4. Let f be a continous and bounded function on $[0, \infty)$. Compute

$$\lim_{n\to\infty}\int_0^\infty\cdots\int_0^\infty f\left(\frac{x_1+\ldots+x_n}{n}\right)e^{-(x_1+\ldots+x_n)}dx_1\ldots x_n.$$

- 5. Let X_1, \ldots, X_n be independent identically distributed Poisson random variables for each n with parameter λ_n .
 - (a) Show that $X_1 + \ldots + X_n$ is asymptotically normal if and only if $n\lambda_n \to \infty$.
 - (b) Can you weaken the condition that the X's are identically distributed for each n?
- 6. Let X be a random variable with characteristic function φ . Show that X is symmetric if and only if $\varphi(t)$ is real for all t.
- 7. Let X and Y be integrable random variables on (Ω, \mathcal{F}, P) , and let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . If X = Y on $G \in \mathcal{G}$, show that $\mathrm{E}[X \mid \mathcal{G}] = \mathrm{E}[Y \mid \mathcal{G}]$ a.s. on G.
- 8. Let Z_n be a Galton-Watson branching process with offspring distribution $\{p_k, k=0,1,2,\ldots\}$ and $Z_0=x$ (with x a positive integer), and let $f(\theta)=\sum p_k\theta^k$ be the associated pgf. Suppose that $\rho\in(0,1)$ satisfies $f(\rho)=\rho$. Show that ρ^{Z_n} is a martingale, and use this to conclude that $P(Z_n=0 \text{ for some } n\geq 0)=\rho^x$.
- 9. Let $X \ge 0$, $EX^2 < \infty$, and $0 \le a < EX$. Apply the Cauchy–Schwarz inequality to prove that $P(X > a) \ge (EX a)^2/EX^2$.
- 10. By considering the Poisson distribution, show that

$$e^{-n} \left(1 + n + \frac{n^2}{2!} + \dots + \frac{n^n}{n!} \right) \to \frac{1}{2}$$

as $n \to \infty$.