Probability Qualifying Examination

August 18, 2009

There are 11 problems, of which you must turn in solutions for **exactly** 6 (your best 6, in your opinion). Each problem is worth 10 points, and 40 points is required for passing. On the outside of your exam book, indicate which 6 you have attempted.

If you think a problem is misstated, interpret it in such a way as to make it nontrivial.

- 1. Let X be an exponential random variable with mean 1, that is, $P(X > u) = e^{-u}$ for all u > 0. Evaluate $E[X \mid X \land t]$ and $E[X \mid X \lor t]$ for all t > 0. Here $a \land b := \min(a, b)$ and $a \lor b := \max(a, b)$.
- 2. Let X be a random variable with values in an interval I, and suppose that f and g are nondecreasing functions on I such that f(X) and g(X) have finite variance. Show that $Cov(f(X), g(X)) \ge 0$.

Hint: If X_1 and X_2 are i.i.d. as X, then $(f(X_1) - f(X_2))(g(X_1) - g(X_2)) \ge 0$.

3. Let X_1, X_2, \ldots be independent with

$$P(X_n = n^2 - 1) = n^{-2} = 1 - P(X_n = -1), \quad n \ge 1.$$

Notice that $E[X_n] = 0$ for all $n \ge 1$, which might lead one to expect that $S_n := X_1 + \cdots + X_n$ satisfies $S_n/n \to 0$ a.s. Show that in fact $S_n/n \to -1$ a.s.

4. Let X_1, X_2, \ldots be an i.i.d. sequence with $P(X_1 = 1) = p$ and $P(X_1 = 0) = 1 - p$, where $0 . For each <math>m \ge 1$, define

$$N_m := \min\{n \ge m : (X_{n-m+1}, \dots, X_n) = (1, 1, \dots, 1)\}$$

and show that

$$E[N_m] = \frac{1}{p} + \frac{1}{p^2} + \dots + \frac{1}{p^m}$$

Hint: Evaluate $E[N_m]$ by conditioning on N_{m-1} .

- 5. Consider a deck of n cards labeled 1, 2, ..., n. Assume it is well shuffled with every possible arrangement equally likely. Let E_n be the event that card j is in position j in the shuffled deck for some $j \in \{1, 2, ..., n\}$. Evaluate $P(E_n)$ using inclusion-exclusion and show that $\lim_{n\to\infty} P(E_n) =$ $1 - e^{-1}$.
- 6. The Cauchy distribution has density $f(x) := 1/[\pi(1+x^2)]$ for $-\infty < x < \infty$ and characteristic function $\varphi(t) := e^{-|t|}$ for $-\infty < t < \infty$. Let X_1, X_2, \ldots be i.i.d. Cauchy, put $S_n := X_1 + \cdots + X_n$ for each $n \ge 1$. Show that S_n/n does not converge almost surely or in probability, but does converge in distribution.
- 7. Let X_1, X_2, \ldots be i.i.d. uniform (0, 2), and put $M_n := X_1 X_2 \cdots X_n$ for each $n \ge 1$. Show that $\{M_n\}_{n=1}^{\infty}$ is a martingale. What does the martingale convergence theorem tell us about $\lim_{n\to\infty} M_n$? (In particular, evaluate this limit.)
- 8. Suppose X_1 and X_2 are independent random variables that satisfy the following three properties: (i) $Y_1 := (X_1 + X_2)/\sqrt{2}$ is standard normal; (ii) $Y_2 := (X_1 X_2)/\sqrt{2}$ is standard normal; and (iii) Y_1 and Y_2 are independent. Prove that X_1 and X_2 are normally distributed. Can you compute their respective means and variances?
- 9. Prove that if $P\{X \ge 0\} = 1$ and $0 < E(X^2) < \infty$, then

$$P\{X=0\} \le \frac{\operatorname{Var} X}{E(X^2)}.$$

- 10. Let X and Y be independent, standard-normal random variables. Find the distribution of X/Y?
- 11. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables, each taking the values 0 and 1 with equal probabilities 1/2. Define

$$U := \sum_{n=1}^{\infty} \frac{X_n}{2^n}.$$

Prove that U is distributed uniformly on (0, a) and compute a.