Probability Qualifying Examination

August 18, 2009

There are 11 problems, of which you must turn in solutions for exactly 6 (your best 6 , in your opinion). Each problem is worth 10 points, and 40 points is required for passing. On the outside of your exam book, indicate which 6 you have attempted.

If you think a problem is misstated, interpret it in such a way as to make it nontrivial.

1. Let X be an exponential random variable with mean 1 , that is, $P(X>$ $u)=e^{-u}$ for all $u>0$. Evaluate $E[X \mid X \wedge t]$ and $E[X \mid X \vee t]$ for all $t>0$. Here $a \wedge b:=\min (a, b)$ and $a \vee b:=\max (a, b)$.
2. Let X be a random variable with values in an interval I, and suppose that f and g are nondecreasing functions on I such that $f(X)$ and $g(X)$ have finite variance. Show that $\operatorname{Cov}(f(X), g(X)) \geq 0$.
Hint: If X_{1} and X_{2} are i.i.d. as X, then $\left(f\left(X_{1}\right)-f\left(X_{2}\right)\right)\left(g\left(X_{1}\right)-g\left(X_{2}\right)\right) \geq$ 0 .
3. Let X_{1}, X_{2}, \ldots be independent with

$$
\mathrm{P}\left(X_{n}=n^{2}-1\right)=n^{-2}=1-\mathrm{P}\left(X_{n}=-1\right), \quad n \geq 1
$$

Notice that $\mathrm{E}\left[X_{n}\right]=0$ for all $n \geq 1$, which might lead one to expect that $S_{n}:=X_{1}+\cdots+X_{n}$ satisfies $S_{n} / n \rightarrow 0$ a.s. Show that in fact $S_{n} / n \rightarrow-1$ a.s.
4. Let X_{1}, X_{2}, \ldots be an i.i.d. sequence with $\mathrm{P}\left(X_{1}=1\right)=p$ and $\mathrm{P}\left(X_{1}=0\right)=$ $1-p$, where $0<p<1$. For each $m \geq 1$, define

$$
N_{m}:=\min \left\{n \geq m:\left(X_{n-m+1}, \ldots, X_{n}\right)=(1,1, \ldots, 1)\right\}
$$

and show that

$$
\mathrm{E}\left[N_{m}\right]=\frac{1}{p}+\frac{1}{p^{2}}+\cdots+\frac{1}{p^{m}}
$$

Hint: Evaluate $\mathrm{E}\left[N_{m}\right]$ by conditioning on N_{m-1}.
5. Consider a deck of n cards labeled $1,2, \ldots, n$. Assume it is well shuffled with every possible arrangement equally likely. Let E_{n} be the event that card j is in position j in the shuffled deck for some $j \in\{1,2, \ldots, n\}$. Evaluate $P\left(E_{n}\right)$ using inclusion-exclusion and show that $\lim _{n \rightarrow \infty} P\left(E_{n}\right)=$ $1-e^{-1}$.
6. The Cauchy distribution has density $f(x):=1 /\left[\pi\left(1+x^{2}\right)\right]$ for $-\infty<$ $x<\infty$ and characteristic function $\varphi(t):=e^{-|t|}$ for $-\infty<t<\infty$. Let X_{1}, X_{2}, \ldots be i.i.d. Cauchy, put $S_{n}:=X_{1}+\cdots+X_{n}$ for each $n \geq 1$. Show that S_{n} / n does not converge almost surely or in probability, but does converge in distribution.
7. Let X_{1}, X_{2}, \ldots be i.i.d. uniform $(0,2)$, and put $M_{n}:=X_{1} X_{2} \cdots X_{n}$ for each $n \geq 1$. Show that $\left\{M_{n}\right\}_{n=1}^{\infty}$ is a martingale. What does the martingale convergence theorem tell us about $\lim _{n \rightarrow \infty} M_{n}$? (In particular, evaluate this limit.)
8. Suppose X_{1} and X_{2} are independent random variables that satisfy the following three properties: (i) $Y_{1}:=\left(X_{1}+X_{2}\right) / \sqrt{2}$ is standard normal; (ii) $Y_{2}:=\left(X_{1}-X_{2}\right) / \sqrt{2}$ is standard normal; and (iii) Y_{1} and Y_{2} are independent. Prove that X_{1} and X_{2} are normally distributed. Can you compute their respective means and variances?
9. Prove that if $P\{X \geq 0\}=1$ and $0<E\left(X^{2}\right)<\infty$, then

$$
P\{X=0\} \leq \frac{\operatorname{Var} X}{E\left(X^{2}\right)}
$$

10. Let X and Y be independent, standard-normal random variables. Find the distribution of X / Y ?
11. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables, each taking the values 0 and 1 with equal probabilities $1 / 2$. Define

$$
U:=\sum_{n=1}^{\infty} \frac{X_{n}}{2^{n}}
$$

Prove that U is distributed uniformly on $(0, a)$ and compute a.

