Probability Prelim

August 19, 2008

There are 10 problems, of which you should turn in solutions for 6 (your best 6). Each problem is worth 10 points, and 40 points is required for passing.

1. Let X_{1}, X_{2}, \ldots be random variables such that the partial sums $S_{n}:=$ $X_{1}+X_{2}+\cdots+X_{n}$ determine a martingale. Show that $E\left[X_{i} X_{j}\right]=0$ if $i \neq j$.
2. Let X_{2}, X_{3}, \ldots be independent random variables such that

$$
P\left(X_{n}=n\right)=P\left(X_{n}=-n\right)=\frac{1}{2 n \log n}, \quad P\left(X_{n}=0\right)=1-\frac{1}{n \log n}
$$

Show that this sequence obeys the weak law but not the strong law of large numbers, in the sense that $n^{-1} \sum_{i=1}^{n} X_{i}$ converges to 0 in probability but not almost surely.
3. Let $\left\{X_{n}, n \geq 1\right\}$ be independent $N(0,1)$ random variables. Show that $P\left(\lim \sup \left|X_{n}\right| / \sqrt{\log n}=\sqrt{2}\right)=1$.

Hint: $1-\Phi(x)$ is asymptotic to $\phi(x) / x$ as $x \rightarrow \infty$.
4. Let X_{1}, X_{2}, \ldots be independent random variables such that

$$
X_{n}= \begin{cases}1 & \text { with probability }(2 n)^{-1} \\ 0 & \text { with probability } 1-n^{-1} \\ -1 & \text { with probability }(2 n)^{-1}\end{cases}
$$

Let $Y_{1}:=X_{1}$ and for $n \geq 2$

$$
Y_{n}:= \begin{cases}X_{n} & \text { if } Y_{n-1}=0 \\ n Y_{n-1}\left|X_{n}\right| & \text { if } Y_{n-1} \neq 0\end{cases}
$$

Show that Y_{n} is a martingale with respect to $\mathscr{F}_{n}:=\sigma\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$. Show that Y_{n} does not converge almost surely. Does Y_{n} converge in any way? Why does the martingale convergence theorem not apply?
5. Let X and Y be independent exponential random variables with parameters λ and μ. (For example, $P(X>x)=e^{-\lambda x}$ for $x>0$.)
(a) Show that $Z:=\min (X, Y)$ is independent of the event $\{X<Y\}$.
(b) Find $P(X=Z)$.
(c) Find the distribution of $U:=(X-Y)^{+}=\max (X-Y, 0)$.
(d) Find the distribution of $V:=\max (X, Y)-\min (X, Y)$.
6. A die is thrown 10 times. What is the probability that the sum of the scores in 27 ?

Hint: Use probability generating functions.
7. Suppose $W:=(X, Y)$ is a two-dimensional random variable and $Q W^{T}$ is $N(0,1)$ for all 2×2 rotation matrices

$$
Q:=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

Prove that X and Y are independent and $N(0,1)$.
8. Let X_{1}, X_{2}, \ldots and Y_{1}, Y_{2}, \ldots denote random variables on a common probability space. Suppose X_{n} converges to 0 in probability as $n \rightarrow \infty$, and Y_{n} converges to Y weakly. Prove that $\left(X_{n}, Y_{n}\right)$ converges weakly to $(0, Y)$.
9. Construct two random variables X and Y such that:
(a) X is $N(0,1)$,
(b) Y is $N(0,1)$, and
(c) (X, Y) is not a Gaussian random vector.
10. Suppose X and Y are independent bounded random variables. Prove in complete detail the following assertions:
(a) $E(X Y)=E(X) E(Y)$,
(b) $E(X \mid Y)=E(X)$.

