Probability Prelim Exam

January 2020

Instructions (Read before you begin)

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for at most 6 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

1. Let X_{1}, X_{2}, \ldots, and X be real-valued random variables defined on a common probability space. Note they do NOT have to be independent or identically distributed. Prove that

$$
\sum_{n=1}^{\infty} \mathrm{E}\left[\left|X_{n}-X\right|\right]<\infty \Longrightarrow X_{n} \rightarrow X \text { almost surely }
$$

2. Let A_{1}, A_{2}, \ldots, be a sequence of events (not necessarily independent) such that

$$
\sum_{n=1}^{\infty} \mathrm{P}\left(A_{n}\right)=\infty \quad \text { and } \quad \mathrm{P}\left(A_{n} \cap A_{m}\right) \leq \mathrm{P}\left(A_{n}\right) \mathrm{P}\left(A_{m}\right) \text { for } m \neq n
$$

Prove that $\mathrm{P}\left(A_{n}\right.$ i.o. $)=1$ or provide a counterexample. (Hint: Consider the mean and variance of $\sum_{i=1}^{n} \mathbf{1}_{A_{i}}$).
3. Let X be a non-negative, integer-valued random variable.
a) Prove that $\mathrm{E}[X]=\sum_{n=1}^{\infty} \mathrm{P}(X \geq n)$.
b) A dresser has k distinct pairs of socks (so $2 k$ socks total) and the socks are unmatched. We select, at random and without replacement, one sock at a time until a pair has been drawn. Compute the expectation of the total number of draws needed.
4. Let X and Y be any two random variables. Suppose $\mathrm{E}\left[X^{2}\right]<\infty$. The conditional variance of X given Y is defined to be

$$
\operatorname{Var}(X \mid Y)=\mathrm{E}\left[(X-\mathrm{E}[X \mid Y])^{2} \mid Y\right]
$$

Prove the conditional variance formula:

$$
\operatorname{Var}(X)=\mathrm{E}[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(\mathrm{E}[X \mid Y])
$$

5. Let $\left\{X_{n}: n \in \mathbb{N}\right\}$ be a sequence of i.i.d. positive integrable random variables. Define $T_{n}=X_{1}+\cdots+X_{n}, n \in \mathbb{N}$, and $N(t)=\max \left\{n \in \mathbb{N}: T_{n} \leqslant t\right\}, t \geqslant 0$. Show that with probability one, $\frac{N(t)}{t} \rightarrow \frac{1}{\mathrm{E}\left[X_{1}\right]}$ as $t \rightarrow \infty$. (Hint: Sketch what the process $t \mapsto N(t)$ looks like for a fixed realization of the X_{n}. What do you know about the asymptotic behavior of the jump times?)
6. Fix numbers $p_{x}, q_{x} \in(0,1), x \in \mathbb{N}$, such that $p_{x}+q_{x} \leqslant 1$. Let $\left\{Z_{n, x}: n, x \in \mathbb{N}\right\}$ be independent random variables that take values in $\{-1,0,1\}$, with common distribution

$$
\mathrm{P}\left(Z_{n, x}=1\right)=p_{x}, \quad \mathrm{P}\left(Z_{n, x}=-1\right)=q_{x}, \quad \mathrm{P}\left(Z_{n, x}=0\right)=1-p_{x}-q_{x}
$$

Let $X_{0}=1$ and for $n \in \mathbb{Z}_{+}$define inductively $X_{n+1}=X_{n}+Z_{n, X_{n}}$ if $X_{n} \in \mathbb{N}$ and $X_{n+1}=0$ if $X_{n}=0$. In particular, $X_{n} \in \mathbb{Z}_{+}$almost surely. These X_{n} satisfy

$$
\begin{aligned}
& \mathrm{P}\left(X_{n+1}=x+1 \mid X_{n}=x\right)=p_{x}, \\
& \mathrm{P}\left(X_{n+1}=x-1 \mid X_{n}=x\right)=q_{x}, \\
& \mathrm{P}\left(X_{n+1}=x \mid X_{n}=x\right)=1-p_{x}-q_{x},
\end{aligned}
$$

if $x \in \mathbb{N}$ and $\mathrm{P}\left(X_{n+1}=x \mid X_{n}=x\right)=1$ if $x=0$. The process X_{n} is called a birth and death process, absorbed at 0 . Now define the function $\phi: \mathbb{Z}_{+} \rightarrow \mathbb{R}$ by $\phi(0)=0$, $\phi(1)=1$, and for an integer $x \geqslant 2$,

$$
\phi(x)=1+\sum_{i=1}^{x-1} \prod_{j=1}^{i} \frac{q_{j}}{p_{j}} .
$$

Prove that $M_{n}=\phi\left(X_{n}\right)$ is a martingale in the natural filtration $\mathcal{F}_{n}=\sigma\left(X_{0}, \ldots, X_{n}\right)$.
7. Assume the same setting as in the previous problem. You can assume that the claim in that problem is true and solve this problem independently.
a) For an integer $a \geqslant 0$ let $T_{a}=\inf \left\{n \geqslant 0: X_{n}=a\right\}$. Fix $a \geqslant 2$ and prove that $P\left(T_{0}<\infty\right.$ or $\left.T_{a}<\infty\right)=1$. (Hint: As long as the process is not at 0 it has a positive probability to go up a times in a row. How do you turn this observation into a proof?)
b) Calculate $P\left(T_{a}<T_{0} \mid X_{0}=1\right)$. (Carefully explain why the conditions of the theorems you use are satisfied.)
8. Use your limit theorems to prove that the following limit exists and to compute its value:

$$
\lim _{n \rightarrow \infty} \int_{-\sqrt{n}}^{\sqrt{n}}\left(1-\frac{x^{2}}{2 n}\right)^{n} d x
$$

You need to fully justify the use of whatever limit theorem you choose.
9. Recall that the characteristic function of a random variable X is defined as $\phi_{X}(t)=$ $\mathrm{E}\left[e^{i t X}\right]$ for $t \in \mathbb{R}$. Prove that if $X \in L^{1}$ then $\phi_{X}^{\prime}(0)=\mathrm{E}[X]$. Make sure to justify all of your steps.
10. Consider the symmetric random variable X taking values in $\mathbb{Z} \backslash\{-1,0,1\}$ with distribution

$$
\mathrm{P}(X=k)=\mathrm{P}(X=-k)=\frac{C}{k^{2} \log k}, \quad k=2,3, \ldots
$$

a) Prove that there is a finite $C<\infty$ such that the above is a probability distribution.
b) Show that $\mathrm{E}[|X|]=\infty$, hence $\mathrm{E}[X]$ is not defined.
c) However, prove that $\phi_{X}^{\prime}(0)=0$, which shows that the converse direction of the previous problem is not always true. This requires showing that the limit defining $\phi_{X}^{\prime}(0)$ exists and equals zero. (Hint: Prove then use the inequality $|\cos x-1| \leq$ $\min \left(x^{2} / 2,1\right)$.)

