Probability Prelim Exam

January 2019

Instructions (Read before you begin)

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for at most 6 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

1. Let X_{n} be a sequence of i.i.d. random variables. Assume that $P\left(X_{n} \rightarrow \infty\right)>0$. Prove that $P\left(X_{0}=\infty\right)=1$. Hint: first prove that $P\left(X_{n} \rightarrow \infty\right)=1$.
2. Let $X_{n}: \Omega \rightarrow \mathbb{R}$ be a sequence of integrable random variables with the same distribution. Prove that $X_{n} / n \rightarrow 0$ almost surely. Hint: Borel-Cantelli.
3. Let X and Y be two random variables such that $P(X \leqslant Y)=1$. Assume also that $P(X \leqslant x) \leqslant P(Y \leqslant x)$ for all $x \in \mathbb{R}$. Prove that $P(X=Y)=1$.
4. (Pólya's Urn) An urn initially contains r red and b blue balls. A ball is chosen uniformly at random (i.e. with probability $1 /(r+b)$ each). If If it comes up red (resp. blue), then it is returned and another red (resp. blue) ball is added to the urn. The process is repeated indefinitely. Let R_{n} be the number of red balls in the urn after n draws.
a) Prove that the fraction of red balls $M_{n}=R_{n} /(r+b+n)$ has an almost sure limit M_{∞} as $n \rightarrow \infty$.
b) Suppose now $r=b=1$. Prove that $P\left(R_{n}=k\right)=1 /(n+1)$ for $1 \leqslant k \leqslant n+1$. Hint: Write down the probability of choosing k red and $n-k$ blue balls in some fixed order.
c) Still assuming $r=b=1$, what is the distribution of M_{∞} ? Hint: use part b) to compute $P\left(M_{\infty} \leqslant x\right)$.
5. Let X_{n} be a sequence of independent random variables with $P\left(X_{n}=1\right)=1 / n=$ $1-P\left(X_{n}=0\right)$. Prove that $\left(\sum_{i=1}^{n} X_{i}-\log n\right) / \sqrt{\log n}$ converges weakly to a standard normal.
6. Fix $\alpha \in(0,1)$. Let X_{n} be a sequence of independent random variables with $P\left(X_{n}=\right.$ $n)=P\left(X_{n}=-n\right)=n^{-\alpha} / 2$ and $P\left(X_{n}=0\right)=1-n^{-\alpha}$. Prove that $\left(X_{1}+\cdots+\right.$ $\left.X_{n}\right) / n^{(3-\alpha) / 2}$ converges weakly to a centered normal.
7. Let M_{n} be a martingale with $M_{0}=0$ and increments $X_{n}=M_{n}-M_{n-1}$ that satisfy $E\left[X_{n}^{2}\right]<\infty$ for all n. Assume that $\left(b_{n}\right)_{n=1}^{\infty}$ is an increasing sequence of positive real numbers such that $b_{n} \rightarrow \infty$ and

$$
\sum_{n=1}^{\infty} \frac{\mathrm{E}\left[X_{n}^{2}\right]}{b_{n}^{2}}<\infty
$$

Show that $M_{n} / b_{n} \rightarrow 0$ almost surely as $n \rightarrow \infty$. Hint: Since the sum of the X_{k} is a martingale so too should be a weighted sum; prove this idea and use it to produce a new martingale out of the X_{k} and b_{k}. Derive convergence properties of this new martingale, and then use Kronecker's Lemma: if a_{n} is a sequence of numbers such that $\sum_{n=1}^{\infty} a_{n}$ exists and is finite and b_{n} is a sequence of the type above, then

$$
\frac{1}{b_{n}} \sum_{k=1}^{n} a_{k} b_{k} \rightarrow 0 \text { as } n \rightarrow \infty
$$

8. Let X_{1}, X_{2}, \ldots be iid random variables with common pdf

$$
f(x)= \begin{cases}0, & |x| \leq 2 \\ \frac{c}{x^{2} \log |x|}, & |x|>2\end{cases}
$$

(a) Prove that there is a finite constant c which makes f a pdf.
(b) Let $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$. Prove that $S_{n} / n \rightarrow 0$ in probability as $n \rightarrow \infty$. Hint: Prove that S_{n} / n converges to 0 in distribution, then explain why you can upgrade to convergence in probability for free.
(c) Does $S_{n} / n \rightarrow 0$ almost surely as $n \rightarrow \infty$?
9. Let X and Y be two integer-valued random variables defined on the same probability space. The total variation distance between X and Y is defined as

$$
d_{T V}(X, Y)=2 \sup _{A \subseteq \mathbb{Z}}|P(X \in A)-P(Y \in A)|
$$

Prove that $\mathbb{P}(X=Y) \leq 1-\frac{1}{2} d_{T V}(X, Y)$.
10. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be bounded and continuous and fix $\lambda>0$. Use properties of the Poisson distribution to show that

$$
\sum_{k=0}^{\infty} g(k / n) \frac{(n \lambda)^{k}}{k!} e^{-n \lambda} \rightarrow g(\lambda) \text { as } n \rightarrow \infty
$$

