Probability Prelim Exam

January 2018

Instructions (Read before you begin)

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for at most 6 problems. On the outside of your exam booklet, indicate which problem you are turning in.
Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

1. Let $\left(X_{n}\right)$ be a sequence of real-valued random variables and define the tail σ-algebra $\mathcal{T}=\cap_{n \geqslant 1} \sigma\left(X_{n}, X_{n+1}, \ldots\right)$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Prove or disprove the following statements.
(a) $\left\{\lim _{n \rightarrow \infty} S_{n}\right.$ exists $\} \in \mathcal{T}$.
(b) $\left\{\overline{\lim }_{n \rightarrow \infty} S_{n}>0\right\} \in \mathcal{T}$.
(c) $\left\{\varlimsup_{n \rightarrow \infty} S_{n} / c_{n}>1\right\} \in \mathcal{T}$ if $c_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
2. Let μ be a translation invariant σ-finite measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Assume that there exist $\alpha<\beta$ such that $\mu((\alpha, \beta])<\infty$. Prove that there exists a finite positive constant c such that $c \mu$ is Lebesgue measure.
3. Let $\left(X_{n}\right)$ be i.i.d. random variables with mean μ.
(a) Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{i=1}^{n} \frac{X_{i}}{i}=\mu \quad \text { almost surely. }
$$

(b) If the random variables also have a finite variance $\sigma^{2}<\infty$, then find a_{n} such that

$$
a_{n}\left(\sum_{i=1}^{n} \frac{X_{i}}{i}-\mu \log n\right)
$$

has a weak limit. Identify this weak limit. (You need to prove the weak convergence, once you have identified a_{n} and the limiting distribution.)
4. (a) Prove the Borel-Cantelli lemma. That is, prove that if $\left\{A_{n}\right\}_{n \geqslant 1}$ is any sequence of events satisfying $\sum_{n \geqslant 1} P\left(A_{n}\right)<\infty$, then $P\left(A_{n}\right.$ occurs for infinitely many $\left.n\right)=0$.
(b) Prove that if $\left(X_{n}\right)$ is any sequence of real-valued random variables, then there are constants c_{n} so that $X_{n} / c_{n} \rightarrow 0$ almost surely as $n \rightarrow \infty$.
5. Prove or disprove the following statement. If X_{n} converges weakly to X as $n \rightarrow \infty$ and $Z_{n}-X_{n}$ converges weakly to 0 as $n \rightarrow \infty$, then Z_{n} converges weakly to X as $n \rightarrow \infty$.
6. Let X and Y be two standard normal random variables (defined on a common probability space and having positive variances).
(a) Prove that they are independent if and only if they are jointly normal (i.e. (X, Y) is a two-dimensional normal random variable) and uncorrelated.
(b) Give an example of two standard normal random variables that are uncorrelated but not jointly normal.
7. Let $\left(X_{n}\right)$ be i.i.d. Cauchy distributed random variables. That is, they have probability density function $\frac{1}{\pi\left(1+x^{2}\right)}$. Abbreviate $S_{n}=X_{1}+\cdots+X_{n}$.
(a) Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left|X_{i}\right|=\infty \quad \text { almost surely }
$$

(b) Using the fact that the characteristic function of a Cauchy distributed random variable is given by $e^{-|t|}$, prove that S_{n} / n is again a Cauchy distributed random variable.
(c) Deduce that

$$
\varlimsup_{n \rightarrow \infty} S_{n} / n=\infty \quad \text { and } \quad \varliminf_{n \rightarrow \infty} S_{n} / n=-\infty, \quad \text { almost surely }
$$

8. Let $\left(X_{n}\right)$ be i.i.d. uniform random variables on $[0,1]$. For each $n \geqslant 1$, define

$$
Y_{n}=n \min \left\{X_{k}: 1 \leqslant k \leqslant n\right\} .
$$

Prove that as $n \rightarrow \infty, Y_{n}$ converges weakly to an exponential random variable with mean one.
9. Suppose $\left(M_{n}\right)$ is a martingale with $M_{0}=0$ and $\left|M_{n+1}-M_{n}\right| \leqslant 1$ for all $n \geqslant 0$.
(a) Prove that there exists a finite positive constant C such that $e^{x} \leqslant 1+x+C x^{2}$ for all $x \in[-1,1]$.
(b) Prove that $E\left[e^{\lambda M_{n}}\right] \leqslant\left(1+C \lambda^{2}\right)^{n} \leqslant e^{C \lambda^{2} n}$ for all $n \geqslant 1$ and $\lambda \in(0,1)$.
(c) Prove that $M_{n} / n^{\delta} \rightarrow 0$ almost surely for every $\delta>1 / 2$.
10. Give an example of a sequence of random variables X_{n} with densities $f_{n}(x)$ so that X_{n} converges weakly as $n \rightarrow \infty$ to a uniform random variable on $[0,1]$, but $f_{n}(x)$ does not converge to 1 for any $x \in[0,1]$.

