Probability Prelim Exam

January 2018

Instructions (Read before you begin)

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for at most 6 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

- 1. Let (X_n) be a sequence of real-valued random variables and define the tail σ -algebra $\mathcal{T} = \bigcap_{n \ge 1} \sigma(X_n, X_{n+1}, \ldots)$. Let $S_n = X_1 + \cdots + X_n$. Prove or disprove the following statements.
 - (a) $\{\lim_{n\to\infty} S_n \text{ exists}\} \in \mathcal{T}.$
 - (b) $\{\overline{\lim}_{n\to\infty} S_n > 0\} \in \mathcal{T}.$
 - (c) $\{\overline{\lim}_{n\to\infty} S_n/c_n > 1\} \in \mathcal{T} \text{ if } c_n \to \infty \text{ as } n \to \infty.$
- 2. Let μ be a translation invariant σ -finite measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Assume that there exist $\alpha < \beta$ such that $\mu((\alpha, \beta]) < \infty$. Prove that there exists a finite positive constant c such that $c\mu$ is Lebesgue measure.
- 3. Let (X_n) be i.i.d. random variables with mean μ .
 - (a) Prove that

$$\lim_{n \to \infty} \frac{1}{\log n} \sum_{i=1}^{n} \frac{X_i}{i} = \mu \quad \text{almost surely.}$$

(b) If the random variables also have a finite variance $\sigma^2 < \infty$, then find a_n such that

$$a_n \left(\sum_{i=1}^n \frac{X_i}{i} - \mu \log n \right)$$

has a weak limit. Identify this weak limit. (You need to prove the weak convergence, once you have identified a_n and the limiting distribution.)

- 4. (a) Prove the Borel-Cantelli lemma. That is, prove that if {A_n}_{n≥1} is any sequence of events satisfying ∑_{n≥1} P(A_n) < ∞, then P(A_n occurs for infinitely many n) = 0.
 (b) Prove that if (X_n) is any sequence of real-valued random variables, then there are constants c_n so that X_n/c_n → 0 almost surely as n → ∞.
- 5. Prove or disprove the following statement. If X_n converges weakly to X as $n \to \infty$ and $Z_n X_n$ converges weakly to 0 as $n \to \infty$, then Z_n converges weakly to X as $n \to \infty$.
- 6. Let X and Y be two standard normal random variables (defined on a common probability space and having positive variances).

(a) Prove that they are independent if and only if they are jointly normal (i.e. (X, Y) is a two-dimensional normal random variable) and uncorrelated.

(b) Give an example of two standard normal random variables that are uncorrelated but not jointly normal.

7. Let (X_n) be i.i.d. Cauchy distributed random variables. That is, they have probability density function $\frac{1}{\pi(1+x^2)}$. Abbreviate $S_n = X_1 + \cdots + X_n$.

(a) Prove that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} |X_i| = \infty \quad \text{almost surely.}$$

(b) Using the fact that the characteristic function of a Cauchy distributed random variable is given by $e^{-|t|}$, prove that S_n/n is again a Cauchy distributed random variable.

$$\overline{\lim_{n \to \infty}} S_n / n = \infty \quad \text{and} \quad \underline{\lim_{n \to \infty}} S_n / n = -\infty, \quad \text{almost surely.}$$

8. Let (X_n) be i.i.d. uniform random variables on [0,1]. For each $n \ge 1$, define

$$Y_n = n \min\{X_k : 1 \leqslant k \leqslant n\}.$$

Prove that as $n \to \infty$, Y_n converges weakly to an exponential random variable with mean one.

9. Suppose (M_n) is a martingale with $M_0 = 0$ and $|M_{n+1} - M_n| \leq 1$ for all $n \geq 0$.

(a) Prove that there exists a finite positive constant C such that $e^x \leq 1 + x + Cx^2$ for all $x \in [-1, 1]$.

(b) Prove that $E[e^{\lambda M_n}] \leq (1 + C\lambda^2)^n \leq e^{C\lambda^2 n}$ for all $n \geq 1$ and $\lambda \in (0, 1)$.

- (c) Prove that $M_n/n^{\delta} \to 0$ almost surely for every $\delta > 1/2$.
- 10. Give an example of a sequence of random variables X_n with densities $f_n(x)$ so that X_n converges weakly as $n \to \infty$ to a uniform random variable on [0, 1], but $f_n(x)$ does not converge to 1 for any $x \in [0, 1]$.