Probability Prelim Exam

January 2017

Instructions (Read before you begin)

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for at most 6 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

1. Consider an array $\left\{X_{i, j}\right\}$ of random variables such that, for every $n \geqslant 1$, the collection $X_{1, n}, \ldots, X_{n, n}$ is i.i.d. with common distribution

$$
\mathrm{P}\left\{X_{1, n}=1\right\}=\mathrm{P}\left\{X_{1, n}=-1\right\}=\frac{1}{2}\left(1-\frac{1}{n^{2}}\right)
$$

and $\mathrm{P}\left\{X_{1, n}=n^{2}\right\}=n^{-2}$. Let $S_{n}:=X_{1, n}+\cdots+X_{n, n}$. Prove that $S_{n} / \sqrt{n} \Rightarrow \mathrm{~N}\left(0, \sigma^{2}\right)$ for some $\sigma \in(0, \infty)$, although $\mathrm{E}\left(S_{n} / \sqrt{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$.
2. Consider a one-dimensional simple symmetric random walk: $S_{n}=x+\sum_{k=1}^{n} X_{k}$, where x is where the walk starts and $\left\{X_{n}: n \geqslant 1\right\}$ are i.i.d. with

$$
\mathrm{P}\left(X_{n}=1\right)=\mathrm{P}\left(X_{n}=-1\right)=1 / 2 .
$$

(a) Compute the probability that starting at $x=0$ the random walk will hit -1 before it hits $b \in \mathbb{N}$. Deduce from this that the random walk is recurrent, i.e. starting at 0 the random walk will return to 0 with probability 1 .
(b) Compute the mean time it takes the random walk to go from $x=0$ to -1 . Deduce from this that the random walk is null recurrent, i.e. starting at 0 , the mean time it takes to return to 0 is infinite.
(Hint: Prove first that when $x=0$ both S_{n} and $S_{n}^{2}-n$ are martingales.)
3. Let X_{1}, X_{2}, \ldots be a collection of i.i.d. random variables, and define $S_{n}:=X_{1}+\cdots+X_{n}$ for all $n \geqslant 1$. Suppose

$$
\mathrm{P}\left\{X_{1}=k\right\}=\frac{3}{\pi^{2} k^{2}} \quad \text { for all } k= \pm 1, \pm 2, \ldots
$$

Prove that S_{n} / n converges weakly to a non-constant random variable as $n \rightarrow \infty$.
4. Suppose $X, Y \in L^{1}(P)$ satisfy $E[X \mid Y]=Y$ and $E[Y \mid X]=X$ almost surely. Prove that $X=Y$ almost surely. (Hint: Prove first that $E[X-Y ; X<q<Y]=0$ for all q.)
5. Let p_{n} and q_{n} denote two probability mass functions on \mathbb{Z}^{n}, for every integer $n \geqslant 1$. That is, for all $n \geqslant 1$:
(a) $p_{n}(\boldsymbol{x}) \geqslant 0$ and $q_{n}(\boldsymbol{x}) \geqslant 0$ for all $\boldsymbol{x} \in \mathbb{Z}^{n}$; and
(b) $\sum_{\boldsymbol{x} \in \mathbb{Z}^{n}} p_{n}(\boldsymbol{x})=\sum_{\boldsymbol{x} \in \mathbb{Z}^{n}} q_{n}(\boldsymbol{x})=1$.

Now suppose $\left\{X_{i}\right\}_{i=1}^{\infty}$ is a collection of random variables such that $\left(X_{1}, \ldots, X_{n}\right)$ has mass function p_{n} for every $n \geqslant 1$. That is,

$$
\mathrm{P}\left\{X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right\}=p_{n}\left(x_{1}, \ldots, x_{n}\right) \quad \text { for all }\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}
$$

(a) Prove that $p_{n}\left(X_{1}, \ldots, X_{n}\right)>0$ a.s. for all $n \geqslant 1$.
(b) Prove that $\left\{Z_{n}\right\}_{n=1}^{\infty}$ is a martingale, where, for all $n \geqslant 1$,

$$
Z_{n}:=\frac{q_{n}\left(X_{1}, \ldots, X_{n}\right)}{p_{n}\left(X_{1}, \ldots, X_{n}\right)},
$$

almost surely on the P-measure-one event $\left\{p_{n}\left(X_{1}, \ldots, X_{n}\right)>0\right\}$, and $Z_{n}:=0$ otherwise.
(c) Prove that $\lim _{n \rightarrow \infty} Z_{n}$ exists a.s. and is finite a.s. (This is a starting point for likelihood-ratio testing in classical statistics.)
6. If X_{1}, X_{2}, \ldots are independent standard normal random variables, then find non-random sequences $a_{n}, b_{n} \rightarrow \infty$ such that $a_{n} \min _{1 \leqslant i \leqslant n} X_{i}+b_{n}$ converges weakly. Identify the limiting distribution.
7. Suppose X_{1}, X_{2}, \ldots are independent mean-zero random variables that satisfy the condition $\sum_{i=1}^{\infty} \operatorname{Var}\left(X_{i}\right)<\infty$.
(a) Prove that $\sum_{n=1}^{\infty} X_{n}$ exists a.s. and is finite a.s.
(b) Use part (a) to prove that if $\varepsilon_{1}, \varepsilon_{2}, \ldots$ are i.i.d. with $\mathrm{P}\left\{\varepsilon_{1}= \pm 1\right\}=1 / 2$, then the random harmonic series $\sum_{i=1}^{\infty}\left(\varepsilon_{i} / i\right)$ converges a.s. and is finite a.s.
(c) Is $\sum_{i=1}^{\infty}\left(\varepsilon_{i} / i\right)$ in $L^{1}(\mathrm{P})$?
8. Suppose that X_{1}, X_{2}, \ldots are i.i.d. exponential random variables with parameter $\lambda>0$. Prove that $\overline{\lim }_{n \rightarrow \infty}\left(X_{n} / \log n\right)=\lambda^{-1}$ and $\underline{\lim }_{n \rightarrow \infty}\left(\log X_{n} / \log n\right)=-1$.
9. Let X_{1}, X_{2}, \ldots be i.i.d. with $\mathrm{P}\left\{X_{1}=1\right\}=p$ and $\mathrm{P}\left\{X_{1}=-1\right\}=q$, where $p \notin\left\{0, \frac{1}{2}, 1\right\}$ and $q=1-p$. Define $S_{n}:=X_{1}+\cdots+X_{n}$ for all $n \geqslant 1$ and consider the stopping time, $T:=\inf \left\{n \geqslant 1:\left|S_{n}\right|=5\right\}$, where $\inf \varnothing:=\infty$. Prove that $T \in L^{1}(\mathrm{P})$ and compute $\mathrm{E}(T)$. (Hint: Begin by proving that $M_{n}:=(q / p)^{S_{n}}$ and $N_{n}:=S_{n}-(p-q) n$ are martingales.)
10. Let X and Y be two real-valued random variables. Let f and g be two non-decreasing measurable functions such that $f(X)$ and $g(Y)$ are integrable. Prove that

$$
E[f(X) g(Y)] \geqslant E[f(X)] E[g(Y)] .
$$

