Probability Prelim Exam

August 2019

Instructions (Read before you begin)

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for at most 6 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

1. Assume that $A_{i}, i=1,2, \ldots$, are independent events. Prove that

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{1}_{A_{i}}-\mathrm{P}\left(A_{i}\right)\right)
$$

converges to zero in probability as $n \rightarrow \infty$, where where $\mathbf{1}_{A_{i}}$ is the indicator function of the event A_{i}.
2. Let Z_{n} be a martingale difference with respect to a filtration \mathscr{F}_{n}, i.e. $\mathrm{E}\left[Z_{n+1} \mid \mathscr{F}_{n}\right]=0$ for all $n \geqslant 0$. Assume the following hold:

1) $n^{-1 / 2} \max _{m \leqslant n}\left|Z_{m}\right| \rightarrow 0$ in probability.
2) $n^{-1} \sum_{m=1}^{n}\left|Z_{m}\right|^{2} \rightarrow 1$ in probability.
3) $\sum_{m=1}^{n}\left|Z_{m}\right|^{2} \leqslant 2 n$ almost surely, for all n.

Prove that $M_{n}=n^{-1 / 2} \sum_{m=1}^{n} Z_{m}$ converges in distribution to a standard normal.
Hint: Prove that $|1+i x| \leqslant e^{x^{2}}$ for all $x \in \mathbb{R}$ and $e^{i x}=(1+i x) e^{-x^{2} / 2+r(x)}$ with $|r(x)| \leqslant$ x^{3} for all $x \in \mathbb{R}$. Let $T_{n}=\prod_{m=1}^{n}\left(1+i t n^{-1 / 2} Z_{m}\right)$ and $U_{n}=e^{-\frac{t^{2}}{2 n} \sum_{m=1}^{n} Z_{m}^{2}+\sum_{m=1}^{n} r\left(t n^{-1 / 2} Z_{m}\right)}$. Compute $\mathrm{E}\left[T_{n}\right]$ then prove that $\mathrm{E}\left[T_{n} U_{n}\right] \rightarrow e^{-t^{2} / 2}$ and conclude.
3. Let X_{k} have characteristic function ϕ_{k} with X_{1}, X_{2}, \ldots, independent random variables. Show that $\sum_{k=1}^{n} X_{k}$ converges almost surely \Leftrightarrow there exists a neighborhood U of 0 and
a function h such that

$$
\prod_{k=1}^{n} \phi_{k}(u) \xrightarrow{n \rightarrow \infty} h(u) \neq 0
$$

for all $u \in U$. Hint: For the \Leftarrow direction consider the characteristic function of the partial sums $\sum_{k=m}^{n} X_{k}$.
4. Let Z_{1}, Z_{2}, \ldots be iid with $\mathrm{P}(Z=1)=\mathrm{P}(Z=-1)=1 / 2$, and let c_{1}, c_{2}, \ldots be given constants.
(a) Express the characteristic function of $\sum_{k=1}^{n} c_{k} Z_{k}$ in terms of standard elementary functions.
(b) Show that $\sum_{k>1} c_{k} Z_{k}$ converges almost surely $\Leftrightarrow \sum_{k=1}^{\infty} c_{k}^{2}<\infty$. For this you can use results we proved in class, or other problems on this exam.
5. Let $\left(Z_{n}\right)$ be i.i.d. random variables with $P\left(Z_{1}=1\right)=P\left(Z_{1}=2\right)=1 / 2$. Show that $E\left[Z_{1} \cdots Z_{n}\right]=(1.5)^{n}$ and yet $Z_{1} \cdots Z_{n} /(1.45)^{n} \rightarrow 0$ almost surely. Identify the set of numbers $a>0$ for which $Z_{1} \cdots Z_{n} / a^{n} \rightarrow 0$ almost surely.
6. (Pólya's Urn) An urn initially contains r red and b blue balls. A ball is chosen uniformly at random (i.e. with probability $1 /(r+b)$ each). If it comes up red (resp. blue), then it is returned and another red (resp. blue) ball is added to the urn. The process is repeated indefinitely. Let R_{n} be the number of red balls in the urn after n draws.
a) A vector $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of random variables is said to be exchangeable if

$$
\left(X_{1}, \ldots, X_{n}\right) \sim\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right) \quad \text { for all permutations } \pi
$$

where \sim denotes equality in distribution. If X_{i} is the indicator that a red ball is drawn from the urn at time i, prove that $\left(X_{1}, \ldots, X_{n}\right)$ is exchangeable.
b) Find the mean and variance of $S_{n}=X_{1}+\ldots+X_{n}$, the total number of red balls added to the urn up to time n.
7. Let $\left\{X_{i, n}: i, n \geqslant 1\right\}$ be i.i.d. random variables with mass function $\{f(x): x=$ $0,1,2, \ldots\}$. Fix $z \in\{1,2, \ldots\}$. Define random variables $\left(Z_{n}\right)$ as follows:

$$
Z_{0}=z \quad \text { and } \quad Z_{n}=\sum_{i=1}^{Z_{n-1}} X_{i, n} \quad \text { for } n \geqslant 1
$$

I.e. Z_{n} is a branching process with offspring distribution f and initial population z.

For $s \in[0,1]$ let $g(s)=\sum_{x=0}^{\infty} f(x) s^{x}$. Suppose that $s_{0} \in(0,1)$ solves $g(s)=s$. Show that then $s_{0}^{Z_{n}}$ is a martingale in the filtration $\mathcal{F}_{n}=\sigma\left(X_{i, m}: i \geqslant 1, m \leqslant n\right)$. Use this to conclude that

$$
P\left(Z_{n}=0 \text { for some } n \geqslant 0\right)=s_{0}^{z} .
$$

8. Let X and Y be independent $N(0,1)$ random variables, and let $Z=X+Y$.
(a) Show that $\mathrm{E}[Z \mid X>0, Y>0]=2 \sqrt{2 / \pi}$.
(b) Find the distribution and the density of Z given that $X>0$ and $Y>0$. (You can use the CDF of a standard normal, $\Phi(x)=P(X \leqslant x)$, in your expression.)
9. Suppose X_{1}, X_{2}, \ldots are iid with $\mathrm{E}\left|X_{i}\right|=\infty$. Let $S_{n}=X_{1}+\ldots+X_{n}$, and let A be the event that $M_{n}=S_{n} / n$ converges to a finite limit. Let B be the event that $\left|X_{n}\right| \geq n$ infinitely often.
(a) State the definition of B in terms of unions and intersections.
(b) Show that $\mathrm{P}(B)=1$.
(c) Verify the identity

$$
M_{n}-M_{n+1}=\frac{M_{n}}{n+1}-\frac{X_{n+1}}{n+1}
$$

and use it to show that $A \cap B=\varnothing$.
(d) Use the above to prove that $\mathrm{P}(A)=0$.
10. Let X_{1}, X_{2}, \ldots be independent random variables with

$$
X_{n}= \begin{cases}1, & \text { with probability } 1 /(2 n) \\ 0, & \text { with probability } 1-1 / n \\ -1, & \text { with probability } 1 /(2 n)\end{cases}
$$

Let $Y_{1}=X_{1}$ and for $n \geq 2$ define

$$
Y_{n}= \begin{cases}X_{n}, & \text { if } Y_{n-1}=0 \\ n Y_{n-1}\left|X_{n}\right|, & \text { if } Y_{n-1} \neq 0\end{cases}
$$

Show that Y_{n} is a martingale with respect to $\mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$. Show that Y_{n} does not converge almost surely. Why does the martingale convergence theorem not apply?

