Probability Prelim Exam

August 2018

Instructions (Read before you begin)

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for at most 6 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

1. Let μ be a translation invariant σ-additive measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mu((0,1])<$ ∞. Prove that there exists a $c \in(0, \infty)$ such that $c \mu$ is Lebesgue measure.
2. Let $\left\{X_{i}: i \geqslant 1\right\}$ be a sequence of non-negative, i.i.d. random variables such $\mathrm{E}\left[X_{1}\right]=\infty$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{n}=\infty \quad \text { almost surely. }
$$

3. Let μ and ν be probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Let $\lambda=\frac{1}{2} \mu+\frac{1}{2} \nu$. Let \mathscr{F} be a σ-algebra contained in $\mathcal{B}(\mathbb{R})$. Let $\mu_{\mathcal{F}}, \nu_{\mathcal{F}}$, and $\lambda_{\mathcal{F}}$ be the restrictions of μ, ν, and λ to \mathcal{F}, respectively.
a) Prove that $\mu_{\mathcal{F}} \ll \lambda_{\mathcal{F}}$ and $\nu_{\mathcal{F}} \ll \lambda_{\mathcal{F}}$.
b) What is $f_{\mu}=\frac{d \mu_{\mathcal{F}}}{d \lambda_{\mathcal{F}}}$ in terms of $\frac{d \mu}{d \lambda}$? Of course, a similar relationship holds for $f_{\nu}=\frac{d \nu_{\mathcal{F}}}{d \lambda_{\mathcal{F}}}$.
c) For a bounded $\mathcal{B}(\mathbb{R})$-measurable function g, compute $\mathrm{E}^{\lambda}[g \mid \mathcal{F}]$ in terms of $\mathrm{E}^{\mu}[g \mid \mathcal{F}]$, $\mathrm{E}^{\nu}[g \mid \mathcal{F}], f_{\mu}$, and f_{ν} ?
4. Let $\left\{X_{i}: i \geqslant 1\right\}$ be i.i.d. integrable random variables. Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{i=1}^{n} \frac{X_{i}}{i}=\mathrm{E}\left[X_{1}\right] .
$$

5. Let $\left\{X_{i}: i \geqslant 1\right\}$ be i.i.d. random variables distributed uniformly on $[0,1]$. Prove that the distribution of

$$
\frac{4 \sum_{i=1}^{n} i X_{i}-n^{2}}{n^{3 / 2}}
$$

converges weakly and identify the limiting distribution.
6. Let $\left\{X_{n}: n \geqslant 1\right\}$ be a stochastic process adapted to a filtration $\left\{\mathcal{F}_{n}: n \geqslant 1\right\}$ and satisfying $\mathrm{E}\left[\left|X_{n}\right|\right]<\infty$ for all $n \geqslant 1$. Prove that $\left\{X_{n}: n \geqslant 1\right\}$ is a martingale if and only if $\mathrm{E}\left[X_{T}\right]=\mathrm{E}\left[X_{1}\right]$ for all bounded stopping times T.
7. Let $\left\{X_{n}: n \geqslant 1\right\}$ be a martingale with respect to filtration $\left\{\mathcal{F}_{n}: n \geqslant 1\right\}$, and let T be a stopping time with respect to $\left\{\mathcal{F}_{n}: n \geqslant 1\right\}$. Prove the following two forms of the optional stopping theorem:
a) If T is almost surely bounded then $\mathrm{E}\left[X_{T}\right]=\mathrm{E}\left[X_{1}\right]$,
b) If $\mathrm{E}\left[\max _{1 \leqslant n \leqslant T}\left|X_{n}\right|\right]<\infty$, then $\mathrm{E}\left[X_{T}\right]=\mathrm{E}\left[X_{1}\right]$.
8. Prove the identity

$$
\frac{\sin \theta}{\theta}=\int_{0}^{1} e^{i \theta(2 x-1)} d x
$$

Then use this to show that

$$
\frac{\sin \theta}{\theta}=\prod_{n=1}^{\infty} \cos \left(\theta / 2^{n}\right)
$$

Hint: Use that a Uniform $(0,1)$ random variable can be written as an infinite weighted sum of iid Bernoulli $(1 / 2)$ random variables.
9. Let Z_{1}, Z_{2}, \ldots be iid $N(0,1)$ random variables. First prove Mills' ratio

$$
\mathrm{P}\left(Z_{i}>\lambda\right) \leq \frac{1}{\lambda \sqrt{2 \pi}} e^{-\lambda^{2} / 2}
$$

for any $\lambda>0$. Use this to show that for any $\epsilon>0$

$$
\mathrm{P}\left(\limsup _{n \rightarrow \infty} \frac{\max _{k \leq n} Z_{k}}{\sqrt{(2-\epsilon) \log n}}>1\right)=1
$$

10. Show that for every $\rho \in(-1,1)$ the function

$$
f(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}\right)
$$

is a pdf on \mathbb{R}^{2}, and that if (X, Y) is a pair of random variables with pdf f then

$$
\mathrm{P}(X Y<0)=\frac{1}{\pi} \arccos \rho .
$$

