Probability Prelim Exam

August 2017

Instructions (Read before you begin)

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for at most 6 problems. On the outside of your exam booklet, indicate which problem you are turning in.
Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

1. Let X_{1}, X_{2}, \ldots be independent random variables, and suppose that $p_{i}:=\mathrm{P}\left\{X_{i}=0\right\}$ satisfies $0<p_{i}<1$ for every $i=1,2, \ldots$. For every $n \geqslant 1$ let $N_{n}:=\sum_{i=1}^{n} \mathbf{1}_{\left\{X_{i}=0\right\}}$ denote the number of times the finite random sequence X_{1}, \ldots, X_{n} enters zero. Prove that

$$
\frac{N_{n}}{\sum_{i=1}^{n} p_{i}} \rightarrow 1 \quad \text { in probability as } n \rightarrow \infty
$$

2. Let X_{n} be i.i.d. random variables with mean μ and variance $\sigma^{2}<\infty$. Prove (without using the law of the iterated logarithm) that we have almost surely

$$
\varlimsup_{n \rightarrow \infty} \frac{S_{n}-n \mu}{\sigma \sqrt{n}}=\infty \quad \text { and } \quad \underline{\lim _{n \rightarrow \infty}} \frac{S_{n}-n \mu}{\sigma \sqrt{n}}=-\infty
$$

3. Suppose X and Y are two independent, real-valued random variables, and suppose that $\mathrm{P}\{X \in A\}=0$ for all Borel sets A of zero Lebesgue measure. Prove, carefully, that there exists a measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\mathrm{P}\{X+Y \in B\}=\int_{B} f(x) \mathrm{d} x \quad \text { for all measurable sets } B \subseteq \mathbb{R}
$$

4. Let X_{1}, X_{2}, \ldots be a collection of i.i.d. random variables, taking values ± 1 with probability $1 / 2$ each. Define $S_{n}:=X_{1}+\cdots+X_{n}$ for all $n \geqslant 1, T_{0}:=0$, and then iteratively define

$$
T_{k+1}:=\inf \left\{n>T_{k}: S_{n}=0\right\} \quad[\inf \varnothing:=\infty] \quad \text { for all } k \geqslant 0
$$

That is, T_{k} denotes the k th return time to zero. Prove that $\lim _{k \rightarrow \infty}\left(T_{k} / k\right)=\infty$ a.s.
5. Suppose X is a nonnegative random variable that satisfies the following: There exist two real numbers $a, b>0$ such that $a^{n} \leqslant \mathrm{E}\left[X^{n}\right] \leqslant b^{n}$ for every integer $n \geqslant 1$. Prove that $\mathrm{P}\{a \leqslant X \leqslant b\}=1$.
6. Let X_{1}, \ldots, X_{m} be $m \geqslant 2$ i.i.d. standard normal random variables, and define the random vector

$$
\boldsymbol{X}:=\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{m}
\end{array}\right]
$$

Prove that the distribution of \boldsymbol{X} is the same as the distribution of $\boldsymbol{A} \boldsymbol{X}$ for every $m \times m$ orthogonal matrix \boldsymbol{A} that is non random.
7. Suppose X is a discrete, non-negative random variable with mass function p. Prove that

$$
\lim _{n \rightarrow \infty}\left(\mathrm{E}\left[X^{n}\right]\right)^{1 / n}=\sup \{x \in \mathbb{R}: p(x)>0\}
$$

8. Fix $0<\lambda<\rho$ and let X, Y, and Z be three independent Gamma distributed random variables with common scale parameter 1 and shape parameters $\lambda, \rho-\lambda$, and ρ, respectively. (A Gamma random variable with scale parameter 1 and shape parameter λ has $\operatorname{pdf} \frac{1}{\Gamma(\lambda)} x^{\lambda-1} e^{-x} \mathbf{1}_{\{x>0\}}$.) Let

$$
U=\frac{Z X}{X+Y}, \quad V=\frac{Z Y}{X+Y}, \quad \text { and } \quad W=X+Y
$$

Prove that random vector (U, V, W) has the same distribution as (X, Y, Z). (It may be useful to note that $Z=U+V$.)
9. Let M_{n} be an L^{1}-bounded martingale with respect to a filtration \mathcal{F}_{n}. Prove that there exist two non-negative martingales Y_{n} and Z_{n} (in the same filtration) such that $M_{n}=Y_{n}-Z_{n}$. Hint: Use $Z_{n, j}=\mathrm{E}\left[\left|M_{j}\right| \mid \mathcal{F}_{n}\right]$ for $j \geqslant n$.
10. Let M_{n} be a martingale such that $\sup _{n} \mathrm{E}\left[M_{n}^{2}\right]<\infty$. Prove that there exists a random variable $M_{\infty} \in L^{2}$ such that $M_{n} \rightarrow M_{\infty}$ in L^{2}. Hint: $M_{n}=M_{0}+\sum_{j=1}^{n}\left(M_{j}-M_{j-1}\right)$.

