Probability Prelim Exam

August 2016

Instructions (Read before you begin)

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for at most 6 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

1. Construct an example of a countable family $\left\{\mathscr{F}_{i}\right\}_{i=1}^{\infty}$ of σ-algebras such that $\sigma\left(\cup_{i=1}^{\infty} \mathscr{F}_{i}\right) \neq$ $\cup_{i=1}^{\infty} \mathscr{F}_{i}$. Can you do this so that $\mathscr{F}_{i} \subset \mathscr{F}_{i+1}$ for all $i \geqslant 1$? Justify your reasoning.
2. Choose and fix two integers $N \geqslant 1$ and $x \in\{0,1, \ldots, N\}$. Let $X_{0}=x$ and suppose that, conditionally, X_{n+1} has a $\operatorname{Binomial}\left(N, X_{n} / N\right)$ distribution given X_{1}, \ldots, X_{n}. More precisely, for all $n \geqslant 0$ and $k=0, \ldots, N$,

$$
\mathrm{P}\left(X_{n+1}=k \mid \mathscr{F}_{n}\right)=\binom{N}{k}\left(\frac{X_{n}}{N}\right)^{k}\left(1-\frac{X_{n}}{N}\right)^{N-k}
$$

where $\mathscr{F}_{n}=\sigma\left(\left\{X_{1}, \ldots, X_{n}\right\}\right)$ for all $n \geqslant 1$. Prove that:
(a) $X_{\infty}=\lim _{n \rightarrow \infty} X_{n}$ exists a.s. and in $L^{p}(\mathrm{P})$ for all $1 \leqslant p<\infty$.
(b) Prove that $\mathrm{E}\left(X_{\infty}\right)=x$ and $\mathrm{E}\left(X_{\infty}^{2}\right)=N x$.
(c) Compute the distribution of X_{∞}.
3. Let $n \geqslant 1$ be a fixed integer and recall that there are n ! permutations of $[n]:=$ $\{1, \ldots, n\}$. Let $\sigma:=\{\sigma(1), \ldots, \sigma(n)\}$ denote an arbitrary permutation of $[n]$, and choose and fix some integer $j \in[n]$. We say that σ fixes j if $\sigma(j)=j$. Now suppose that σ is selected at random, all permutations of $[n]$ equally likely.
(a) What is the probability that σ fixed j ?
(b) What is the expectation of the number of integers in $[n]$ that are fixed by σ ?
4. Construct two uncorrelated random variables that are not independent.
5. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be i.i.d. random variables, and let $p>0$ be fixed. Prove that the following are equivalent:
(a) $\mathrm{E}\left(\left|X_{1}\right|^{p}\right)<\infty$;
(b) $n^{-1 / p} X_{n} \rightarrow 0$ almost surely; and
(c) $n^{-1 / p} \max _{1 \leqslant j \leqslant n}\left|X_{j}\right| \rightarrow 0$ almost surely.
6. Suppose $\left\{X_{n}\right\}_{n=1}^{\infty}$ are i.i.d. exponential random variables with mean one; that is, $\mathrm{P}\left\{X_{n}>x\right\}=\mathrm{e}^{-x}$ for all $x>0$. Prove that

$$
\mathrm{P}\left\{\limsup _{n \rightarrow \infty} \frac{X_{n}}{\log n}=1\right\}=1
$$

7. Suppose X_{1}, X_{2}, \ldots are i.i.d. strictly positive random variables. Compute for all $n, m, k \geqslant 1$,

$$
\mathrm{E}\left(\frac{X_{1}^{k}+\cdots+X_{m}^{k}}{X_{1}^{k}+\cdots+X_{n}^{k}}\right)
$$

You might wish to start by calculating $\mathrm{E}\left(X_{1}^{k} \mid X_{1}^{k}+\cdots+X_{n}^{k}\right)$.
8. Let X and Y be two positive random variables. We say that X is stochastically dominated by Y if $\mathrm{P}\{X>a\} \leqslant \mathrm{P}\{Y>a\}$ for all $a>0$. Prove that, in this case, $\mathrm{E}\left(X^{k}\right) \leqslant \mathrm{E}\left(Y^{k}\right)$ for all $k \geqslant 1$.
9. Suppose $X_{1}, N_{1}, X_{2}, N_{2}, \ldots$ are independent random variables such that the X 's are Bernoulli $(1 / 2)$-that is, $\mathrm{P}\left\{X_{i}=0\right\}=\mathrm{P}\left\{X_{i}=1\right\}=1 / 2$ for all $i \geqslant 1$-and each N_{n} is Poisson (n); that is,

$$
\mathrm{P}\left\{N_{n}=k\right\}=\frac{n^{k} \mathrm{e}^{-n}}{k!} \quad \text { for all integers } n \geqslant 1 \text { and } k \geqslant 0
$$

Find non-random sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ such that, as $n \rightarrow \infty$,

$$
\frac{\sum_{i=1}^{N_{n}} X_{i}-a_{n}}{b_{n}} \Rightarrow \mathrm{~N}(0,1)
$$

10. Suppose $\mathrm{P}\left\{X_{1}=0\right\}=\mathrm{P}\left\{X_{1}=1\right\}=1 / 2$ and for all integers $n \geqslant 1$,

$$
\mathrm{P}\left(X_{n+1}=1 \mid \mathscr{F}_{n}\right)=1-\mathrm{P}\left(X_{n+1}=0 \mid \mathscr{F}_{n}\right)=\frac{S_{n}}{n},
$$

where $S_{n}:=X_{1}+\cdots+X_{n}$ and $\mathscr{F}_{n}:=\sigma\left(\left\{X_{1}, \ldots, X_{n}\right\}\right)$. Prove that $n^{-1} S_{n}=X_{1}$ almost surely for all $n \geqslant 1$.

