Probability Prelim Exam

August 2016

Instructions (Read before you begin)

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for **at most** 6 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

- 1. Construct an example of a countable family $\{\mathscr{F}_i\}_{i=1}^{\infty}$ of σ -algebras such that $\sigma(\bigcup_{i=1}^{\infty}\mathscr{F}_i) \neq \bigcup_{i=1}^{\infty}\mathscr{F}_i$. Can you do this so that $\mathscr{F}_i \subset \mathscr{F}_{i+1}$ for all $i \geq 1$? Justify your reasoning.
- 2. Choose and fix two integers $N \ge 1$ and $x \in \{0, 1, ..., N\}$. Let $X_0 = x$ and suppose that, conditionally, X_{n+1} has a Binomial $(N, X_n/N)$ distribution given $X_1, ..., X_n$. More precisely, for all $n \ge 0$ and k = 0, ..., N,

$$P(X_{n+1} = k \mid \mathscr{F}_n) = {N \choose k} \left(\frac{X_n}{N}\right)^k \left(1 - \frac{X_n}{N}\right)^{N-k},$$

where $\mathscr{F}_n = \sigma(\{X_1, \dots, X_n\})$ for all $n \ge 1$. Prove that:

- (a) $X_{\infty} = \lim_{n \to \infty} X_n$ exists a.s. and in $L^p(P)$ for all $1 \le p < \infty$.
- (b) Prove that $E(X_{\infty}) = x$ and $E(X_{\infty}^2) = Nx$.
- (c) Compute the distribution of X_{∞} .
- 3. Let $n \ge 1$ be a fixed integer and recall that there are n! permutations of $[n] := \{1, \ldots, n\}$. Let $\sigma := \{\sigma(1), \ldots, \sigma(n)\}$ denote an arbitrary permutation of [n], and choose and fix some integer $j \in [n]$. We say that σ fixes j if $\sigma(j) = j$. Now suppose that σ is selected at random, all permutations of [n] equally likely.
 - (a) What is the probability that σ fixed j?
 - (b) What is the expectation of the number of integers in [n] that are fixed by σ ?
- 4. Construct two uncorrelated random variables that are not independent.

- 5. Let $\{X_n\}_{n=1}^{\infty}$ be i.i.d. random variables, and let p > 0 be fixed. Prove that the following are equivalent:
 - (a) $E(|X_1|^p) < \infty$;
 - (b) $n^{-1/p}X_n \to 0$ almost surely; and
 - (c) $n^{-1/p} \max_{1 \le j \le n} |X_j| \to 0$ almost surely.
- 6. Suppose $\{X_n\}_{n=1}^{\infty}$ are i.i.d. exponential random variables with mean one; that is, $P\{X_n > x\} = e^{-x}$ for all x > 0. Prove that

$$P\left\{\limsup_{n\to\infty}\frac{X_n}{\log n}=1\right\}=1.$$

7. Suppose X_1, X_2, \ldots are i.i.d. strictly positive random variables. Compute for all $n, m, k \ge 1$,

$$E\left(\frac{X_1^k + \dots + X_m^k}{X_1^k + \dots + X_n^k}\right)$$

You might wish to start by calculating $E(X_1^k \mid X_1^k + \cdots + X_n^k)$.

- 8. Let X and Y be two positive random variables. We say that X is stochastically dominated by Y if $P\{X > a\} \leq P\{Y > a\}$ for all a > 0. Prove that, in this case, $E(X^k) \leq E(Y^k)$ for all $k \geq 1$.
- 9. Suppose $X_1, N_1, X_2, N_2, \ldots$ are independent random variables such that the X's are Bernoulli(1/2)—that is, $P\{X_i = 0\} = P\{X_i = 1\} = 1/2$ for all $i \ge 1$ —and each N_n is Poisson(n); that is,

$$P\{N_n = k\} = \frac{n^k e^{-n}}{k!}$$
 for all integers $n \ge 1$ and $k \ge 0$.

Find non-random sequences $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ such that, as $n \to \infty$,

$$\frac{\sum_{i=1}^{N_n} X_i - a_n}{b_n} \Rightarrow \mathcal{N}(0, 1).$$

10. Suppose $P\{X_1 = 0\} = P\{X_1 = 1\} = \frac{1}{2}$ and for all integers $n \ge 1$,

$$P(X_{n+1} = 1 \mid \mathscr{F}_n) = 1 - P(X_{n+1} = 0 \mid \mathscr{F}_n) = \frac{S_n}{n},$$

where $S_n := X_1 + \dots + X_n$ and $\mathscr{F}_n := \sigma(\{X_1, \dots, X_n\})$. Prove that $n^{-1}S_n = X_1$ almost surely for all $n \ge 1$.