Preliminary Exam, Numerical Analysis, January 2009

Instructions: This exam is closed books and notes, and no electronic devices are allowed. The allotted time is three hours and you need to work on any three out of questions 1-4 and any two out of questions 5-7. All questions have equal weight and a score of 75% is considered a pass. Indicate clearly the work that you wish to be graded.
-1- (Polynomial Interpolation.) Let $I=[a, b]$, let $x_{i}, i=0, \ldots, n$, be $n+1$ distinct points in I, and let $y_{i}, i=0, \ldots, n$, be $n+1$ given real numbers. Show that there exists a unique polynomial

$$
p(x)=\sum_{i=0}^{n} \alpha_{i} x^{i}
$$

such that

$$
p\left(x_{i}\right)=y_{i}, \quad i=0, \ldots, n
$$

-2- (Error Analysis.) Consider the linear system

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

where A is an invertible matrix. Let \hat{x} be an approximation of the solution of (1) and let

$$
e=x-\hat{x} \quad \text { and } \quad r=b-A \hat{x}
$$

Let $\|\cdot\|$ denote any vector norm or the corresponding induced matrix norm. Show that

$$
\frac{\|e\|}{\|x\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|r\|}{\|b\|}
$$

Comment on the significance of the condition number $\|A\|\left\|A^{-1}\right\|$ and give a lower bound for it in terms of the eigenvalues of A.
-3- (Linear Programming.) Define the phrase "Linear Programming Problem". Let A be a given $m \times n$ matrix with $m>n$, and let $b \in \mathbb{R}^{m}$ be a given vector. Write the problem

$$
\text { Find } x \in \mathbb{R}^{n} \quad \text { such that } \quad\|A x-b\|_{\infty}=\min
$$

as a linear programming problem.
-4- (The Gershgorin Theorem.) Let λ be an eigenvalue of $A \in A^{n \times n}$. Show that there exists an

$$
\begin{equation*}
i \in\{1,2, \cdots, n\} \tag{2}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left|a_{i i}-\lambda\right| \leq \sum_{\substack{j=1 \\ i \neq j}}^{n}\left|a_{i j}\right| \tag{3}
\end{equation*}
$$

For every eigenvalue λ, the inequality (3) describes a circle in the complex plane called a Gershgorin circle. Let S be a set that is the union of $k \leq n$ Gershgorin circles such that the intersection of S with all other Gershgorin circles is empty. Show that S contains precisely k eigenvalues of A (counting multiplicities). Without proof or counterproof state whether it is possible for a Gershgorin Circle not to contain any eigenvalue at all.
-5- (Adaptive Quadrature.) Describe the basic idea of adaptive quadrature, and give a simple example, including formulas.
-6- (Linear Multistep Methods.) Consider the initial value problem

$$
y^{\prime}=f(x, y), \quad y(a)=y_{0}
$$

Let h be some stepsize, $x_{n}=a+n h, y_{n} \approx y\left(x_{n}\right)$, and $f_{n}=f\left(x_{n}, y_{n}\right)$, for $n=0,1,2,3, \ldots$. Let k be some step number, and ignore the question of obtaining starting values y_{1}, y_{2}, \ldots, y_{k-1}. Suppose the approximations $y_{n}, n=k, k+1, \ldots$ are obtained by the Linear Multistep Method

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j} \tag{4}
\end{equation*}
$$

Define what is meant by the local truncation error and the order of the linear multistep method (4). Compute the order and the local truncation error of Euler's Method

$$
\begin{equation*}
y_{n+1}-y_{n}=h f_{n} . \tag{5}
\end{equation*}
$$

-7- (Numerical PDEs.) Consider the one-dimensional heat equation: Find $u(x, t)$ such that

$$
u_{t}=u_{x x}, \quad t \geq 0, \quad x \in[0,1], \quad u(x, 0)=f(x), \quad u(0, t)=u(1, t)=0 .
$$

Describe how this problem might be solved by applying the Method of Lines and Euler's Method. Give formulas that could be used to write a suitable computer code.

