Preliminary Exam, Numerical Analysis, August 2008

Instructions: This exam is closed books and notes, and no electronic devices are allowed. The allotted time is three hours and you need to work on any three out of questions 1-4 and any two out of questions 5-7. All questions have equal weight and a score of 75% is considered a pass. Indicate clearly the work that you wish to be graded.
-1- (QR factorization.) Show how to compute the QR factorization of a real $m \times n$ matrix A (with $m \geq n$) using Householder reflections, and describe how to use the QR factorization to solve the Least Squares problem

$$
\begin{equation*}
\|A x-b\|_{2}=\min \tag{1}
\end{equation*}
$$

-2- (Gaussian Quadrature.) Let w be a positive weight function. Explain how to pick the knots x_{i} and the weights $w_{i}, i=1, \ldots, n$ such that the integration formula

$$
\begin{equation*}
\int_{a}^{b} w(x) f(x) \mathrm{d} x=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right) \tag{2}
\end{equation*}
$$

is exact for polynomials f of degree as high as possible, and show why this works. How high a polynomial degree is possible?
-3- (Interpolation error.) Let $I=[a, b]$ and $f \in C^{\infty}[a, b]$. Let $x_{i}, i=0, \ldots, n$ be $n+1$ distinct points in I. Let $p(x)$ be the unique polynomial of degree at most n satisfying $p\left(x_{i}\right)=f\left(x_{i}\right), i=0, \ldots, n$. Given x in $[a, b]$, show that there exists some point $\xi \in[a, b]$ such that

$$
\begin{equation*}
f(x)-p(x)=\frac{\prod_{i=0}^{n}\left(x-x_{i}\right)}{(n+1)!} f^{(n+1)}(\xi) \tag{3}
\end{equation*}
$$

-4- (Singular Value Decomposition.) Let A be an $m \times n$ matrix. You may assume that $m \geq n$. Define what is meant by the singular value decomposition of A and show that every $m \times n$ matrix has one.
-5- (Absolute Stability.) Consider solving the initial value problem

$$
\begin{equation*}
y^{\prime}=f(x, y), \quad y(a)=y_{0} \tag{4}
\end{equation*}
$$

by the linear multistep method (LMM)

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j} \tag{5}
\end{equation*}
$$

where we use the standard notation

$$
\begin{equation*}
x_{n}=a+n h, \quad y_{n} \approx y\left(x_{n}\right), \quad f_{n}=f\left(x_{n}, y_{n}\right) . \tag{6}
\end{equation*}
$$

Define what it means that the LMM is explicit. Define its region of absolute stability. Show that an explicit linear multistep method cannot have an infinite region of absolute stability.
-6- (Convergence.) Consider the one-dimensional heat equation initial boundary value problem

$$
\begin{equation*}
u_{t}=u_{x x}, \quad x \in[0,1], \quad t \geq 0, \quad u(x, 0)=f(x), \quad u(0, t)=u(1, t)=0 \tag{7}
\end{equation*}
$$

and the discretization

$$
\begin{equation*}
x_{m}=m h, \quad t_{n}=n k, \quad \text { and } \quad U_{m}^{n} \approx u\left(x_{m}, t_{n}\right) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{m}^{n+1}=U_{m}^{n}+r\left(U_{m-1}^{n}-2 U_{m}^{n}+U_{m+1}^{n}\right) \tag{9}
\end{equation*}
$$

and $r=k / h^{2}$ is the grid constant. Define what it means that this method is convergent, say for what values of r it is convergent, and show that your statement is correct.
-7- (Local Truncation Error.) Consider the wave equation

$$
\begin{equation*}
u_{t t}=c^{2} u_{x x} \tag{10}
\end{equation*}
$$

and its discretization

$$
\begin{equation*}
x_{m}=m h, \quad t_{n}=n k, \quad U_{m}^{n} \approx u\left(x_{m}, t_{n}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{m}^{n+1}-2 U_{m}^{n}+U_{m}^{n-1}=r\left(U_{m+1}^{n}-2 U_{m}^{n}+U_{m-1}^{n}\right) \tag{12}
\end{equation*}
$$

where $r=c^{2} k^{2} / h^{2}$ is the grid constant. For the purposes of this problem, ignore the issues of initial and boundary conditions. Compute the local truncation error of (12) and show that there is a value of r for which the local truncation error is exactly zero. Give a physical interpretation of this fact.

