Preliminary Examination, Numerical Analysis, January 2017

Instructions: This exam is closed books and notes. The time allowed is three hours and you need to work on any three out of questions 1-5 and any two out of questions 6-8. All questions have equal weights and the passing score will be determined after all the exams are graded. Indicate clearly the work that you wish to be graded.

Note: In problems 6-8, the notations $k=\Delta t$ and $h=\Delta x$ are used.

1. Singular Value Decomposition (SVD):

a) Prove the following statement:

Singular Value Decomposition: Any matrix $A \in \mathbb{C}^{m \times n}$ can be factored as $A=U \Sigma V^{*}$, where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary and $\Sigma \in \mathbb{R}^{m \times n}$ is a rectangular matrix whose only nonzero entries are non-negative entries on its diagonal.
b) Relate the matrices U, V, and Σ to the four fundamental subspaces associated with A, that is, the range and null spaces of A and A^{T}.

2. Linear Least Squares:

The Linear Least Squares problem for an $m \times n$ real matrix A and $b \in \mathbb{R}^{m}$ is the problem:

$$
\text { Find } \mathrm{x} \in \mathbb{R}^{\mathrm{n}} \text { such that }\|\mathrm{Ax}-\mathrm{b}\|_{2} \text { is minimized. }
$$

a) Suppose that you have data $\left\{\left(t_{j}, y_{j}\right)\right\}, j=1,2, \ldots, m$ that you wish to approximate by an expansion

$$
p(t)=\sum_{k=1}^{n} x_{k} \phi_{k}(t)
$$

Here, the functions $\phi_{k}(t)$ are given functions. Which norm on the difference between the approximation function p and the data gives rise to a linear least squares problem for the unknown expansion coefficients x_{k} ? What is the matrix A in this case, and what is the vector b ?
b) Suppose that A is a real $m \times n$ matrix of full rank and let $b \in \mathbb{R}^{m}$. What are the 'normal equations' for the Least Squares problem? How can they be used to solve the Least Squares problem? What is the $Q R$ factorization of A and how can it be used to solve the Least Squares problem? Compare and contrast these approaches for numerically solving the Least Square problem.

3. Sensitivity:

a) Suppose that A is an $n \times n$ nonsingular real matrix. Analyze the sensitivity of solutions of the system $A \mathbf{x}=\mathbf{b}$ to perturbations in \mathbf{b}. What quantity related to A characterizes this sensitivity?
b) Suppose $\tilde{\mathbf{x}}$ is an approximate solution to the linear system $A \mathbf{x}=\mathbf{b}$, where A is an $n \times n$ nonsingular real matrix. The residual is the vector $\mathbf{r}=\mathbf{b}-A \tilde{\mathbf{x}}$. Derive inequalities relating the residual \mathbf{r} to the error $\mathbf{e}=\mathbf{x}-\tilde{\mathbf{x}}$.

4. Interpolation and Integration:

a) Consider $n+1$ distinct points $x_{0}<x_{1}<\ldots<x_{n}$ in the interval $[a, b]$. Let $f(x)$ be a smooth function defined on $[a, b]$. Show that there is a unique polynomial $p(x)$ of degree n which interpolates f at all of the points x_{j}. Derive the formula for the interpolation error at an arbitrary point x in the interval $[a, b]$:

$$
f(x)-p(x) \equiv E(x)=\frac{1}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) f^{n+1}(\eta)
$$

for some $\eta \in[a, b]$.
b) Consider the problem of approximating the integral $I(f)=\int_{a}^{b} f(x) d x$ by a formula of the type $I_{n}(f)=\sum_{j=1}^{n} a_{j} f\left(x_{j}\right)$ where $x_{1}, x_{2}, \ldots, x_{n}$ are distinct points in the interval (a, b). Derive formulas for $a_{j}, j=1, \ldots, n$ so the $I_{n}(f)=I(f)$ when f is any polynomial of degree less than or equal to n.
c) For the same approximate integration problem as in (b), explain how to choose the points $x_{1}, x_{2}, \ldots, x_{n}$ and coefficients $a_{j}, j=1, \ldots, n$, so that $I_{n}(f)=I(f)$ for all polynomials of degree less than or equal to $2 n-1$? Prove that your proposed choice does give the exact integral for these polynomials.

5. Iterative Methods:

Consider the fixed-point iteration

$$
\mathbf{u}^{(k+1)}=T \mathbf{u}^{(k)}+\mathbf{c}
$$

for finding a solution of the problem

$$
\mathbf{u}=T \mathbf{u}+\mathbf{c},
$$

where T is an $m \times m$ real matrix and \mathbf{c} is a real m-vector.
a) Show that the fixed point iteration will converge for an arbitrary initial guess $\mathbf{u}^{(0)}$ if and only if the spectral radius of $T, \rho(T)$, is less than 1 .
b) Consider the boundary value problem

$$
-u^{\prime \prime}(x)=f(x), \text { for } 0 \leq \mathrm{x} \leq 1
$$

with $u(0)=u(1)=0$, and the following discretization of it:

$$
-U_{j-1}+2 U_{j}-U_{j+1}=F_{j},
$$

for $j=1,2, \ldots, N-1$ where $N h=1$ and $F_{j} \equiv h^{2} f(j h)$.
Show that the Jacobi iterative method will converge for this problem for any choice of initial guess. Express the speed of convergence as a function of the discretization stepsize h. How does the number of iterations required to reduce the initial error by a factor δ depend on h ? In practice, would you use this method to solve the given problem? If so, explain why this is a good idea? If not, how would you solve it in practice?

6. Elliptic Problems:

For the one dimensional Poisson problem for $v(x)$

$$
-v^{\prime \prime}(x)+\alpha v(x)=f(x),
$$

where $\alpha \geq 0$ is constant, along with Dirichlet boundary conditions in the interval [0,1], consider the scheme

$$
\Delta_{h} U_{j} \equiv \frac{1}{h^{2}}\left(-U_{j-1}+2 U_{j}-U_{j+1}\right)=f_{j}
$$

for $j=1,2, \ldots, N-1$ where $N h=1, f_{j} \equiv f(j h)$, and $U_{0}=U_{N}=0$. The approximate solution satisfies a linear system $A U=b$, where $U=\left(U_{1}, U_{2}, \ldots, U_{N-1}\right)^{T}$ and $b=h^{2}\left(f_{1}, f_{2}, \ldots, f_{N-1}\right)^{T}$.
a) State and prove the maximum principle for any grid function $V=\left\{V_{j}\right\}$ with values for $j=0,1, \ldots N$, that satisfies $\Delta_{h} V_{j} \geq 0$.
b) Derive the matrix A and show that it is symmetric and positive definite.
c) Use the maximum principle to show that the global error $e_{j}=v\left(x_{j}\right)-U_{j}$ satisfies $\|e\|_{\infty}=$ $O\left(h^{2}\right)$ as the space step $h \rightarrow 0$.

7. Numerical Methods for ODEs:

Consider the Linear Multistep Method

$$
y_{n+2}-\frac{4}{3} y_{n+1}+\frac{1}{3} y_{n}=\frac{2}{3} k f_{n+2}
$$

for solving an initial value problem $y^{\prime}=f(y, x), y(0)=\eta$. You may assume that f is Lipschitz continuous with respect to y uniformly for all x.
a) Analyze the consistency, stability, accuracy, and convergence properties of this method.
b) Sketch a graph of the solution to the following initial value problem.

$$
y^{\prime}=-10^{8}[y-\cos (x)]-\sin (x), \quad y(0)=2
$$

Would it be more reasonable to use this method or the forward Euler method for this problem? What would you consider in choosing a timestep k for each of the methods? Justify your answer.

8. Heat Equation Stability:

Consider the variable coefficient diffusion equation

$$
v_{t}=\left(\beta(x) v_{x}\right)_{x}, \quad 0<x<1, t>0
$$

with Dirichlet boundary conditions

$$
v(0, t)=0, \quad v(1, t)=0
$$

and initial data $v(x, 0)=f(x)$. Assume that $\beta(x) \geq \beta_{0}>0$, and that $\beta(x)$ is smooth. Let $\beta_{j+1 / 2}=\beta\left(x_{j+1 / 2}\right)$. A scheme for this problem is:

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{k}=\frac{1}{h^{2}} \quad\left\{\beta_{j-1 / 2} u_{j-1}^{n+1}-\left(\beta_{j-1 / 2}+\beta_{j+1 / 2}\right) u_{j}^{n+1}+\beta_{j+1 / 2} u_{j+1}^{n+1}\right\} .
$$

Analyze the 2-norm stability of this scheme for solving this initial boundary value problem.
DO NOT NEGLECT THE FACT THAT THE PROBLEM HAS VARIABLE COEFFICIENTS AND THAT THERE ARE BOUNDARY CONDITIONS AT 0 AND 1 !

Fact 1: A real symmetric $n \times n$ matrix A can be diagonalized by an orthogonal similarity transformation, and A 's eigenvalues are real.
Fact 2: The $(N-1) \times(N-1)$ matrix M defined by

has eigenvalues $\mu_{l}=-4 \sin ^{2}\left(\frac{\pi l}{2 N}\right), l=1,2, \ldots, N-1$.
Fact 3: The $(N+1) \times(N+1)$ matrix:
$\left.\begin{array}{rrrrrrllllllll}{\left[\begin{array}{rrrrrrrr} & -1 & 1 & 0 & 0 & 0 & . & . \\ & . & 0 & 0 & 0 & 0 &] \\ {[} & 1 & -2 & 1 & 0 & 0 & . & . \\ \hline\end{array}\right.} & . & 0 & 0 & 0 & 0 &] \\ {[} & 0 & 1 & -2 & 1 & 0 & . & . & . & 0 & 0 & 0 & 0 &] \\ {[} & 0 & 0 & 1 & -2 & 1 & . & . & . & 0 & 0 & 0 & 0 &] \\ {[} & . & . & . & . & . & . & . & . & . & . & . & . &] \\ {[} & . & . & . & . & . & . & . & . & . & . & . & . &] \\ {[} & . & . & . & . & . & . & . & . & . & . & . & . &] \\ {[} & . & . & . & . & . & . & . & . & . & . & . & . &] \\ {[} & . & . & . & . & . & . & . & . & . & . & . & . & .\end{array}\right]$
has eigenvalues $\mu_{l}=-4 \sin ^{2}\left(\frac{\pi l}{2(N+1)}\right), l=0,1, \ldots, N$.
Fact 4: For a real $n \times n$ matrix A, the Rayleigh quotient of a vector $x \in R^{n}$ is the scalar

$$
r(x)=\frac{x^{T} A x}{x^{T} x}
$$

The gradient of $r(x)$ is

$$
\nabla r(x)=\frac{2}{x^{T} x}(A x-r(x) x)
$$

If x is an eigenvector of A then $r(x)$ is the corresponding eigenvalue and $\nabla r(x)=0$.

