Preliminary Exam, Numerical Analysis, August 2018

Abstract

Instructions: This exam is closed book, no notes, and no electronic devices are allowed. You have three hours and you need to work on any three out of questions 1-4, and any three out of questions 5-8. All questions have equal weight and a score of 75% is considered a pass. Indicate clearly the work that you wish to be graded.

Problem 1. (Singular values and eigenvalues)
Let $A \in \mathbb{C}^{N \times N}$. Prove the following statements:
(a) The set of squared singular values of A equals the set of eigenvalues of $A^{*} A$.
(b) Assume that A is diagonalizable and that every eigenvalue λ of A satisfies $|\lambda|<1$. Then:

$$
\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0
$$

Problem 2. (Unitary matrices)
Let $A, B \in \mathbb{C}^{N \times N} . A$ and B are unitarily equivalent if there is a unitary matrix Q such that $A=Q B Q^{*}$. For each of the following statements, prove that it is true, or demonstrate that it is false:
(a) If A and B are unitarily equivalent, then they have the same singular values.
(b) If A and B have the same singular values, then they are unitarily equivalent.

Problem 3. (Finite difference formulas)
Given $h>0$, compute weights v_{0} and $\left\{w_{j}\right\}_{j=-1}^{1}$ for the following finite difference formula for the third derivative $f^{(3)}(x)$:

$$
\begin{aligned}
f^{(3)}(x) & \approx v_{0} f^{\prime}(x)+\sum_{j=-1}^{1} w_{j} f(x+j h) \\
& =v_{0} f^{\prime}(x)+w_{-1} f(x-h)+w_{0} f(x)+w_{1} f(x+h) .
\end{aligned}
$$

What is the order of accuracy of your formula?
Problem 4. (Lebesgue's Lemma)
Let I be a closed, bounded interval on the real line and let $\|f\|_{\infty}:=\sup _{x \in I}|f(x)|$. Given N distinct points $x_{1}, \ldots, x_{N} \in I$ and a continuous function f, consider the Lagrange form of the degree- $(N-1)$ polynomial interpolant of f :

$$
\mathcal{I}_{N} f:=\sum_{j=1}^{N} f\left(x_{j}\right) \ell_{j}(x),
$$

where $\left\{\ell_{j}(\cdot)\right\}_{j=1}^{N}$ are cardinal Lagrange polynomials. Show that

$$
\sup _{\|g\|_{\infty}=1}\left\|\mathcal{I}_{N} g\right\|_{\infty} \leq \Lambda:=\sum_{j=1}^{N}\left|\ell_{j}(x)\right|,
$$

and that

$$
\left\|f-\mathcal{I}_{N} f\right\|_{\infty} \leq(1+\Lambda) \inf _{p \in P_{N-1}}\|f-p\|_{\infty}
$$

where $P_{N-1}=\operatorname{span}\left\{1, x, \ldots, x^{N-1}\right\}$.

Note: In problems 5-8, the notations $k=\Delta t$ and $h=\Delta x$ are used.

Problem 5. (Elliptic Problems)
Consider the one dimensional problem for $v(x)$

$$
\begin{equation*}
v^{\prime \prime}(x)=f(x), \tag{1}
\end{equation*}
$$

in the interval $[0,1]$ along with homogeneous Dirichlet boundary conditions. Define the difference operator

$$
\Delta_{h} U_{j} \equiv \frac{1}{h^{2}}\left(U_{j-1}-2 U_{j}+U_{j+1}\right)
$$

and consider the scheme for Eq. 1

$$
\Delta_{h} U_{j}=f_{j}
$$

for $j=1,2, \ldots, N-1$ where $N h=1, f_{j} \equiv f(j h)$, and $U_{0}=U_{N}=0$. The approximate solution satisfies a linear system $A U=b$, where $U=\left(U_{1}, U_{2}, \ldots, U_{N-1}\right)^{T}$ and $b=h^{2}\left(f_{1}, f_{2}, \ldots, f_{N-1}\right)^{T}$.
(a) State and prove the maximum principle for any grid function $V=\left\{V_{j}\right\}$ with values for $j=0,1, \ldots N$, that satisfies $\Delta_{h} V_{j} \geq 0$ for $j=1,2 \ldots, N-1$. Sketch a grid function for which $\Delta_{h} V_{j} \geq 0$.
(b) Derive an expression for the local truncation error and find the equation that relates the local trunction error and the global error $e_{j}=v\left(x_{j}\right)-U_{j}$.
(c) Use the maximum principle from part (a) to show that $\|e\|_{\infty}=O\left(h^{2}\right)$ as the space step $h \rightarrow 0$.
(d) Prove that the matrix A is nonsingular.

Problem 6. (Heat Equation Stability)
Consider the variable coefficient diffusion equation

$$
v_{t}=\left(\beta(x) v_{x}\right)_{x}, \quad 0<x<1, t>0
$$

with Dirichlet boundary conditions

$$
v(0, t)=0, \quad v(1, t)=0
$$

and initial data $v(x, 0)=f(x)$. Assume that $\beta(x) \geq \beta_{0}>0$, and that $\beta(x)$ is smooth. Let $\beta_{j+1 / 2}=\beta\left(x_{j+1 / 2}\right)$. A scheme for this problem is:

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{k}=\frac{1}{h^{2}} \quad\left\{\beta_{j-1 / 2} u_{j-1}^{n+1}-\left(\beta_{j-1 / 2}+\beta_{j+1 / 2}\right) u_{j}^{n+1}+\beta_{j+1 / 2} u_{j+1}^{n+1}\right\} .
$$

Analyze the 2-norm stability of this scheme for solving this initial boundary value problem.
DO NOT NEGLECT THE FACT THAT THE PROBLEM HAS VARIABLE COEFFICIENTS AND THAT THERE ARE BOUNDARY CONDITIONS AT 0 AND 1!

Problem 7. (Numerical Methods for ODE Initial Value Problems)
Consider the Linear Multistep Method

$$
y_{n+2}-\frac{4}{3} y_{n+1}+\frac{1}{3} y_{n}=\frac{2}{3} k f_{n+2}
$$

for solving an initial value problem $y^{\prime}=f(y, x), y(0)=\eta$. You may assume that f is Lipschitz continuous with respect to y uniformly for all x.
(a) Analyze the consistency, stability, accuracy, and convergence properties of this method.
(b) Sketch a graph of the solution to the following initial value problem.

$$
y^{\prime}=-10^{8}[y-\cos (x)]-\sin (x), \quad y(0)=2 .
$$

Would it be more reasonable to use this method or the forward Euler method for this problem? What issues should be considered in choosing a timestep k for each of the methods? Justify your answer.

Problem 8. (Higher Order Methods)
Consider the following problem for $v(x)$ on $[0,1]$:

$$
\begin{equation*}
v^{\prime \prime}(x)=f(x), \tag{2}
\end{equation*}
$$

with $v(0)=v(1)=0$. Let $N \cdot h=1$ and define $x_{j}=j \cdot h$ for $j=0,1, \ldots, N$. The finite-difference scheme

$$
\Delta_{h} U_{j}^{h} \equiv \frac{1}{h^{2}}\left(U_{j-1}^{h}-2 U_{j}^{h}+U_{j+1}^{h}\right)=f_{j}^{h}
$$

for $j=1, \ldots, N-1$ with $U_{0}^{h}=U_{N}^{h}=0$ gives values U_{j}^{h} that approximate $v\left(x_{j}\right)$ with an error of $O\left(h^{2}\right)$. Here the superscript h is used to indicate the grid size for the solution. Show how to use this method to find a numerical solution W_{j} whose values approximate $v\left(x_{j}\right)$ with an error of $O\left(h^{4}\right)$ and a numerical solution Y_{j} whose values approximate $v\left(x_{j}\right)$ with an error of $O\left(h^{6}\right)$.

