DEPARTMENT OF MATHEMATICS

University of Utah

Ph.D. PRELIMINARY EXAMINATION IN GEOMETRY/TOPOLOGY January 5, 2017

Instructions: Do all problems from section A and all problems from section B. Be sure to provide all relevant definitions and statements of theorems cited. To pass the exam you need to pass **both** parts.

A. Answer all of the following questions.

- 1. Let B be the open ball in \mathbb{R}^n that is centered at 0 and has radius 1. If $y \in B$ and ||y|| < 1/2, define a vector field on B and use the resulting flow to find a diffeomorphism $h: B \to B$ with h(0) = y such that h is homotopic to the identity map on B. Conclude that if N is a smooth connected manifold and $p, q \in N$, then there is a diffeomorphism $H: N \to N$ such that H(p) = q and such that H is homotopic to the identity map on N.
- 2. Let $A: \mathbb{R}^n \to \mathbb{R}^n$ be linear and let $\phi \in \Lambda^n(\mathbb{R}^n)$. Prove $A^*\phi = \det(A)\phi$.
- 3. Let $\Phi : \mathfrak{sl}_2(\mathbb{R}) \to \mathbb{R}$ be a Lie algebra homomorphism, where $\mathfrak{sl}_2(\mathbb{R})$ is the Lie algebra of $\mathrm{SL}_2(\mathbb{R})$ and \mathbb{R} is the Lie algebra of the Lie group \mathbb{R} . Prove that $\Phi = 0$.
- 4. Let G be a connected Lie group with Lie algebra \mathfrak{g} such that [X,Y]=0 for all $X,Y\in\mathfrak{g}$. Prove that G is abelian.
- 5. Prove that S^n is a smooth manifold for any n.
- 6. Let M and N be smooth, compact, oriented manifolds without boundary, both of dimension n. Suppose that $f: M \to N$ and $g: M \to N$ are smoothly homotopic. Prove that for any $\omega \in \Omega^n(N)$, we have $\int_M f^*\omega = \int_M g^*\omega$.

B. Answer all of the following questions.

- 7. Prove that the fundamental group of a finite connected graph is a free group.
- 8. Show that the union of circles in \mathbb{R}^2 with centers at $(0, \frac{1}{2n})$ and radius $\frac{1}{n}$ does not have a universal cover.
- 9. Show that S^n has a continuous field of nonzero tangent vectors iff n > 0 is odd. Conclude that the even-dimensional spheres are not Lie groups.
- 10. Construct a Δ -complex structure on \mathbb{RP}^3 and use it to compute the cohomology rings of \mathbb{RP}^3 with \mathbb{Z} and \mathbb{Z}_2 coefficients.
- 11. Prove that nonempty open subsets of \mathbb{R}^m and \mathbb{R}^n are not homeomorphic if $m \neq n$.
- 12. Let M be a closed, orientable 3-manifold such that

$$H_1(M;\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}_3$$

Calculate the remaining homology and cohomology groups for M with \mathbb{Z} coefficients.