DEPARTMENT OF MATHEMATICS
 University of Utah
 Ph.D. PRELIMINARY EXAMINATION IN GEOMETRY/TOPOLOGY January 5, 2017

Instructions: Do all problems from section A and all problems from section B. Be sure to provide all relevant definitions and statements of theorems cited. To pass the exam you need to pass both parts.

A. Answer all of the following questions.

1. Let B be the open ball in \mathbb{R}^{n} that is centered at 0 and has radius 1. If $y \in B$ and $\|y\|<1 / 2$, define a vector field on B and use the resulting flow to find a diffeomorphism $h: B \rightarrow B$ with $h(0)=y$ such that h is homotopic to the identity map on B. Conclude that if N is a smooth connected manifold and $p, q \in N$, then there is a diffeomorphism $H: N \rightarrow N$ such that $H(p)=q$ and such that H is homotopic to the identity map on N.
2. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be linear and let $\phi \in \Lambda^{n}\left(\mathbb{R}^{n}\right)$. Prove $A^{*} \phi=\operatorname{det}(A) \phi$.
3. Let $\Phi: \mathfrak{s l}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ be a Lie algebra homomorphism, where $\mathfrak{s l}_{2}(\mathbb{R})$ is the Lie algebra of $\mathrm{SL}_{2}(\mathbb{R})$ and \mathbb{R} is the Lie algebra of the Lie group \mathbb{R}. Prove that $\Phi=0$.
4. Let G be a connected Lie group with Lie algebra \mathfrak{g} such that $[X, Y]=0$ for all $X, Y \in \mathfrak{g}$. Prove that G is abelian.
5. Prove that S^{n} is a smooth manifold for any n.
6. Let M and N be smooth, compact, oriented manifolds without boundary, both of dimension n. Suppose that $f: M \rightarrow N$ and $g: M \rightarrow N$ are smoothly homotopic. Prove that for any $\omega \in \Omega^{n}(N)$, we have $\int_{M} f^{*} \omega=\int_{M} g^{*} \omega$.

B. Answer all of the following questions.

7. Prove that the fundamental group of a finite connected graph is a free group.
8. Show that the union of circles in \mathbb{R}^{2} with centers at $\left(0, \frac{1}{2 n}\right)$ and radius $\frac{1}{n}$ does not have a universal cover.
9. Show that S^{n} has a continuous field of nonzero tangent vectors iff $n>0$ is odd. Conclude that the even-dimensional spheres are not Lie groups.
10. Construct a Δ-complex structure on $\mathbb{R P}^{3}$ and use it to compute the cohomology rings of $\mathbb{R} \mathbb{P}^{3}$ with \mathbb{Z} and \mathbb{Z}_{2} coefficients.
11. Prove that nonempty open subsets of \mathbb{R}^{m} and \mathbb{R}^{n} are not homeomorphic if $m \neq n$.
12. Let M be a closed, orientable 3-manifold such that

$$
H_{1}(M ; \mathbb{Z})=\mathbb{Z} \oplus \mathbb{Z}_{3}
$$

Calculate the remaining homology and cohomology groups for M with \mathbb{Z} coefficients.

