DEPARTMENT OF MATHEMATICS University of Utah Ph.D. PRELIMINARY EXAMINATION IN GEOMETRY/TOPOLOGY January 2014

Instructions: Do all problems from section A and all problems from section B. Be sure to provide all relevant definitions and statements of theorems cited. To pass the exam you need to pass **both** parts.

A. Answer all of the following questions.

- 1. Let M be a smooth compact manifold without boundary and $\Delta \subset M \times M$ the diagonal. Show that Δ is not the boundary of a compact manifold $W \subset M \times M$.
- 2. Define $\omega : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by $\omega(x, y) = x_1 y_1 + \cdots + x_{n-1} y_{n-1} x_n y_n$ and define $f : \mathbb{R}^n \to \mathbb{R}$ by $f(x) = \omega(x, x)$. Show that $M = f^{-1}(-1)$ is a smooth manifold. Viewing ω as a symmetric 2-tensor on \mathbb{R}^n show that the restriction of ω to M is positive definite. (Hint: First assume $y \in T_x M$ and that $x_n + y_n = 0$ and show that $\omega(x + y, x + y) = -1 + \omega(y, y) \ge 0$.)
- 3. Let $S^2 = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$ be the standard 2-sphere in \mathbb{R}^3 and $f : S^2 \to \mathbb{R}$ the restriction of the function $(x, y, z) \mapsto x^2 + 2y^2 + 3z^2$ to S^2 . Find the critical points of f and show that they are non-degenerate. (Recall that a critical point is non-degenerate if in some coordinate chart the determinant of the Hessian is non-zero.)
- 4. Let W be a vector field on a smooth manifold M and assume that V has a flow that is defined on all of M and for all time. Let V be another vector field on M such that V W has compact support. Show that V has a flow on all of M defined for all time.
- 5. Let $S^1 = \{(x, y) : x^2 + y^2 = 1\}$ and define $f : \mathbb{R} \to S^1$ by $f(t) = (\cos 2\pi t, \sin 2\pi t)$. Show there exists a unique 1-form ω on S^1 such that $f^*\omega = dt$. Show that ω is closed but not exact.
- 6. Let M be a smooth manifold. Show that the tangent bundle TM is orientable.

B. Answer all of the following questions.

- 7. Construct an explicit irregular (i.e. not normal) covering space of the Klein bottle.
- 8. Let X be the space obtained from the disjoint union of a circle S^1 and a cylinder $S^1 \times [0, 1]$ by attaching the cylinder along its boundary to the circle with the attaching map on $S^1 \times \{0\}$ having degree 2 and on $S^1 \times \{1\}$ degree 3. Find a presentation of the fundamental group of X.
- 9. Let Y be a space obtained from a space X by attaching an n-cell. What is the relationship between the homology groups of X and of Y? Specifically, prove the following, where $f: X \to Y$ is inclusion.
 - $f_*: H_i(X) \to H_i(Y)$ is an isomorphism for $i \neq n-1, n$.
 - $f_*: H_{n-1}(X) \to H_{n-1}(Y)$ is surjective.

- $f_*: H_n(X) \to H_n(Y)$ is injective.
- Either $f_*: H_{n-1}(X) \to H_{n-1}(Y)$ has finite kernel or $f_*: H_n(X) \to H_n(Y)$ is an isomorphism (but not both).

Assuming the ranks of $H_{n-1}(X)$ and $H_n(X)$ are finite, also prove that

rank $(H_n(X))$ - rank $(H_{n-1}(X))$ = rank $(H_n(Y))$ - rank $(H_{n-1}(Y))$ - 1

- 10. Let $p : \tilde{X} \to X$ be an *n*-sheeted covering map between two connected, locally pathconnected spaces. Let $C_*(X)$ and $C_*(\tilde{X})$ denote the singular chain complexes of X and \tilde{X} respectively.
 - (a) Give a definition of a chain morphism and prove that $\tau: C_*(X) \to C_*(\tilde{X})$ given by

$$\tau(\sigma) = \sum_{i=1}^{n} \hat{\sigma}_i$$

is a chain morphism, where $\hat{\sigma}_1, \dots, \hat{\sigma}_n$ are the *n* lifts of σ to \tilde{X} , and σ is a singular simplex in X.

(b) Prove that

$$p_*: H_i(X; \mathbb{Q}) \to H_i(X; \mathbb{Q})$$

is always surjective. Hint: Consider the composition $p_*\tau: C_*(X) \to C_*(X)$.

(c) Find an example where

$$p_*: H_i(X; \mathbb{Z}) \to H_i(X; \mathbb{Z})$$

is not surjective.

- 11. Prove that there is no map $h : \mathbb{R}P^3 \to \mathbb{R}P^2$ that induces an isomorphism between fundamental groups. Hint: use cup products with $\mathbb{Z}/2\mathbb{Z}$ coefficients. State all theorems you are using.
- 12. Let M be a connected compact 3-manifold (without boundary) and assume that $H_1(M) = \mathbb{Z}/3\mathbb{Z}$. Find $H_2(M)$. Carefully justify the answer, and state all theorems you are using.