DEPARTMENT OF MATHEMATICS University of Utah Ph.D. PRELIMINARY EXAMINATION IN GEOMETRY/TOPOLOGY January 2010

Instructions: Do all problems from section A and four (4) problems from section B. Be sure to provide all relevant definitions and statements of theorems cited.

A. Answer all of the following questions.

- 1. What is the definition of a foliation on a manifold? Give an example of a foliation on a manifold.
- 2. Find the Lie bracket $[2\frac{\partial}{\partial x} + z\frac{\partial}{\partial y}, x\frac{\partial}{\partial x} + y^2\frac{\partial}{\partial z}]$. Is the plane field $\Delta_{(x,y,z)} = \operatorname{span}\{2\frac{\partial}{\partial x} + z\frac{\partial}{\partial y}, x\frac{\partial}{\partial x} + y^2\frac{\partial}{\partial z}\}$ integrable?
- 3. Find $a, b \in C^{\infty}(\mathbb{R}^3)$ such that

$$d(xyzdx \wedge dy + 3x^3dy \wedge dz) = adx \wedge dy \wedge dz$$

and

$$dx \wedge (14xdz) \wedge dy = bdx \wedge dy \wedge dz$$

- 4. Let $f: T^2 \to \mathbb{R}^3$ be an embedding. Find $\int_{T^2} dx \wedge dy$.
- 5. Let G be a Lie group with a discrete subgroup $\Gamma \leq G$. Prove that Γ acts freely and properly discontinuously on G. (It will follow that $\Gamma \setminus G$ is a smooth manifold, but you don't have to show this.)
- 6. Let $f: S^2 \to S^2$ be smooth and surjective. Prove that there is an open set $U \subseteq S^2$ such that $f: U \to f(U)$ is a diffeomorphism.
- 7. Draw a nowhere vanishing vector field on S^1 . Explain why there is a nowhere vanishing vector field on S^3 .
- 8. Find the Lie derivative $L_{y\frac{\partial}{\partial x}+x\frac{\partial}{\partial y}}(xy)$.
- 9. Find

$$\exp\begin{pmatrix} 0 & 1 & 1\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{pmatrix}$$

and

$$\exp\begin{pmatrix} 2 & 0 & 0\\ 0 & 5 & 0\\ 0 & 0 & -3 \end{pmatrix}$$

10. Let $G \cong SO(2) \ltimes \mathbb{R}^4$ be the Lie group given by matrices

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) & x & y\\ \sin(\theta) & \cos(\theta) & z & w\\ 0 & 0 & \cos(\theta) & -\sin(\theta)\\ 0 & 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

where $\theta, x, y, z, w \in \mathbb{R}$. Find the linear subspace of $\mathfrak{gl}_4(\mathbb{R})$ that is the Lie algebra of G.

11. What is the Lie algebra of SO(n)?

B. Answer four of the following questions.

- 12. Let X be a path connected, locally path connected, semi-locally simply connected Hausdorff space. One of the main theorems of covering space theory asserts that there is a simply connected space \tilde{X} and a covering map $p: \tilde{X} \to X$. Outline the construction of \tilde{X} and p as follows:
 - (a) Describe X as a set.
 - (b) Describe the topology on X.
 - (c) Describe p. You do not need to prove that p is a covering map.
 - (d) Outline the proof that X is simply connected.
- 13. Let $S^3 = \{(z, w) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 1\}$ and $S^1 \subset S^3$ is given by w = 0. Let X be the quotient space of S^3 obtained by collapsing S^1 to a point. Use any method to compute $H_k(X;\mathbb{Z})$ for all $k \in \mathbb{Z}$.
- 14. Define the concepts of chain maps and chain homotopies, and prove that chain homotopy is an equivalence relation.
- 15. Let G be a group of homeomorphisms acting freely on the *n*-sphere S^n with *n* even. Prove that G has at most two elements.
- 16. Give an example of a connected cell complex X such that $H_k(X; \mathbb{Z}) = 0$ for all k > 0 but $\pi_1(X) \neq \{1\}$. You do not have to verify the second claim, but you should argue the first.
- 17. Prove that a closed orientable surface S_g of genus $g \ge 1$ is not homotopy equivalent to the wedge $X \lor Y$ of two finite cell complexes both of which have nontrivial $H_1(\cdot; \mathbb{Z})$.
- 18. Let M be a connected topological n-manifold. Define what it means for M to be orientable. Then state the Poincaré duality theorem (including a careful definition of the map that is claimed to be an isomorphism).
- 19. Let X be a cell complex obtained from the circle by attaching a 2-cell with a degree 3 attaching map. Prove that X cannot be embedded into \mathbb{R}^3 . You may assume that the embedding is such that there exists a "regular neighborhood", i.e. a smooth compact manifold $N \subset \mathbb{R}^3$ such that $X \hookrightarrow N$ is a homotopy equivalence.