DEPARTMENT OF MATHEMATICS
 University of Utah
 Ph.D. PRELIMINARY EXAMINATION IN GEOMETRY/TOPOLOGY August 2015

Instructions: Do all problems from section A. Be sure to provide all relevant definitions and statements of theorems cited. To pass the exam you need to have at least 3 completely correct solutions in part A along with passing part B. If you don't pass B but get 4 problems from part A correct you will have passed that section of the exam.

A. Answer all of the following questions.

1. (a) State the definition of a regular value and state the pre-image theorem.
(b) Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth function with $y \in \mathbb{R}^{m}$ a regular value and let $M=F^{-1}(y)$. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is a smooth function and $x \in M$ is critical point for $\left.f\right|_{M}$ what are the possible values for the dimension of $\operatorname{ker} F_{*}(x) \cap \operatorname{ker} f_{*}(x)$? (Here $F_{*}(x)$ is the tangent map from $T_{x} \mathbb{R}^{n} \rightarrow T_{y} \mathbb{R}^{m}$ and $f_{*}(x)$ is also a tangent map.)
(c) Define $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m+k}$ by $G(x)=(F(x), f(x))$.
(i) If $z \in \mathbb{R}^{k}$ is regular value of $\left.f\right|_{M}$ is $(y, z) \in \mathbb{R}^{m+k}$ always a regular value of G ? Give a proof or find a counterexample.
(ii) If $z \in \mathbb{R}^{k}$ is a regular of f (as a function on \mathbb{R}^{n}) is $(y, z) \in \mathbb{R}^{m+k}$ always a regular value of G. Give a proof or find a counterexample.
2. Let M be a differentiable manifold. Prove that its tangent bundle $T M$ and its cotangent bundle $T M^{*}$ are isomorphic as smooth vector bundles.
3. Let V be a smooth vector field on \mathbb{R}^{2} and assume that outside of a compact set $V=\frac{\partial}{\partial x}$. Show that the flow for V is defined for all time.
4. (a) State Stokes theorem.
(b) If $\omega \in \Omega^{n}\left(\mathbb{R}^{n}\right)$ has compact support and $\int_{\mathbb{R}^{n}} \omega \neq 0$ show that there does not exist an $\alpha \in \Omega^{n-1}\left(\mathbb{R}^{n}\right)$ with compact support and $d \alpha=\omega$.
(c) Now assume that $n=1$ and that $\int_{\mathbb{R}} \omega=0$. Find an $\alpha \in \Omega^{0}(\mathbb{R})$ with compact support and $d \alpha=\omega$.
5. Let $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}\right\}$. Define $\pi: \mathbb{R}^{3} \backslash\{0\} \rightarrow S^{2}$ by $\pi(x, y, z)=$ $\left(\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$ and $T_{\epsilon}(x, y, z)=(x, y, z+\epsilon)$. For $\epsilon \in(0,1)$ the map $f_{\epsilon}=\pi \circ T_{\epsilon}$ is a Lefschetz map from S^{2} to itself. Calculate its Lefschetz number and conclude every map of S^{2} to itself that is homotopic to the identity has a fixed point. (Hint: It will be easier to calculate the derivative of π and T_{ϵ} separately and use the chain rule to find the derivative of f_{ϵ}.)
6. Let ω and η be closed forms on a manifold M. Show that the de Rham cohomology class of $\omega \wedge \eta$ only depends on the cohomology classes of ω and η.
