DEPARTMENT OF MATHEMATICS
 University of Utah
 Ph.D. PRELIMINARY EXAMINATION IN GEOMETRY/TOPOLOGY August 2010

Instructions: Do all problems from section A and all problems from section B. Be sure to provide all relevant definitions and statements of theorems cited.

A. Answer all of the following questions.

1. Give a nowhere vanishing vector field on $S L_{n}(\mathbb{R})$.
2. Suppose M is a smooth manifold with a smooth plane field. If the plane field is integrable, then prove that the bracket of any pair of smooth vector fields on M that are tangent to the plane field is another smooth vector field on M that is tangent to the plane field.
3. Give an example of a smooth plane field on a manifold that is not integrable.
4. Given a Lie group G with Lie algebra \mathfrak{g} and some $v \in \mathfrak{g}$, let $\left\{\theta_{t}^{v}\right\}_{t \in \mathbb{R}}$ be the corresponding 1-paramater group of diffeomorphisms of G. Prove that $\theta_{t}^{v}(g h)=g \theta_{t}^{v}(h)$ for any $t \in \mathbb{R}$ and $g, h \in G$.
5. Prove that there are uncountably many 3 -dimensional foliations on a 5 -dimensional torus.
6. Let U be a connected Lie subgroup of $G L_{n}(\mathbb{R})$. Suppose that every element of U has all of its entries below the main diagonal equal to 0 , and all of its entries on the main diagonal equal to 1 . Why is U diffeomorphic to \mathbb{R}^{k} for some k ?
7. Let G be a Lie group with Lie algebra \mathfrak{g}. Given a subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$, prove there is a Lie subgroup $H \leq G$ whose Lie algebra is \mathfrak{h}. (The entire proof with all details would be best. If not, then try to write the main ideas of the proof.)
8. Let X be a smooth vector field on S^{2}. Prove that $X(p)=0$ for some $p \in S^{2}$.

B. Answer all of the following questions.

9. Let X be a topological space and $x_{0} \in X$ a basepoint.
(a) Define $\pi_{1}\left(X, x_{0}\right)$ (describe it as a set and define the group operation; you don't have to prove that it is well defined or that it is a group).
(b) If X is path-connected and $x_{1} \in X$ prove that $\pi_{1}\left(X, x_{0}\right) \cong \pi_{1}\left(X, x_{1}\right)$ (write down an explicit isomorphism and check that it works).
10. (a) Define a covering space $p: \tilde{X} \rightarrow X$.
(b) Let $p: \tilde{X} \rightarrow X$ be a covering space, $\tilde{x}_{0} \in \tilde{X}, x_{0} \in X$, and $p\left(\tilde{x}_{0}\right)=x_{0}$. Show that $p_{*}: \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is injective (carefully state the lifting property you are using).
11. Let X be the cell complex obtained from the circle S^{1} by attaching two 2-cells e_{2}^{2} and e_{3}^{2} with attaching maps of degrees 2 and 3 respectively. Compute the fundamental group of X. Carefully state any theorems you are using.
12. (a) Define the concepts of chain morphisms and chain homotopies.
(b) Show that every map $S^{2} \rightarrow T^{2}$ from the 2 -sphere to the 2-torus is null-homotopic.
(c) Write down explicit cellular chain complexes $C\left(S^{2}\right)$ and $C\left(T^{2}\right)$ for S^{2} and T^{2} and a chain morphism $\Phi: C\left(S^{2}\right) \rightarrow C\left(T^{2}\right)$ which is not chain homotopic to a chain morphism representing a constant map.
13. Let X be the space obtained from two n-spheres by identifying them along their equatorial ($n-1$)-spheres. Using any method you like compute $H_{i}(X)$ for all i. State any theorems you are using (e.g. Mayer-Vietoris).
14. (a) State the universal coefficient theorem for cohomology.
(b) Suppose X is a space such that $H_{0}(X)=\mathbb{Z}, H_{1}(X)=\mathbb{Z} / 2 \mathbb{Z}$ and $H_{i}(X)=0$ for $i>1$. Compute $H^{i}(X ; \mathbb{Z} / 2 \mathbb{Z})$ for all i.
