DEPARTMENT OF MATHEMATICS University of Utah Ph.D. PRELIMINARY EXAMINATION IN GEOMETRY/TOPOLOGY August 2009

Instructions: Do all problems from section A and four (4) problems from section B. Be sure to provide all relevant definitions and statements of theorems cited.

A. Answer all of the following questions.

- 1. Very briefly for each, explain why the following spaces are smooth manifolds: S^n , $\mathbb{P}^n(\mathbb{R})$, T^n , $\mathrm{SL}_n(\mathbb{R})$, and $\mathrm{GL}_n(\mathbb{R})$.
- 2. (a) Let X be a vector field on a smooth manifold M and let $f: M \to N$ be a diffeomorphism. Define $f_*(X)$ the pushforward of X on N.
 - (b) Let $f : \mathbb{R}^3 \to \mathbb{R} \times (-\frac{\pi}{2}, \frac{\pi}{2}) \times \mathbb{R}$ be defined by $f(x, y, z) = (e^x, \tan^{-1}(y), -2z)$. Calculate the bracket $[f_*(\frac{\partial}{\partial x} + \frac{\partial}{\partial z}), f_*(\frac{\partial}{\partial y} \frac{\partial}{\partial z})].$
- 3. Let V and W be vector fields on \mathbb{R}^3 given by

$$V(x,y,z) = \frac{\partial}{\partial x} - y \frac{\partial}{\partial z}$$
 and $W(x,y,z) = \frac{\partial}{\partial y} + x^2 \frac{\partial}{\partial z}$

- (a) Find [V, W](x, y, z).
- (b) What is the definition of an integrable, k-dimensional plane field on a manifold M?
- (c) Prove or disprove: $\Delta(x, y, z) = \text{span}\{V(x, y, z), W(x, y, z)\}$ is an integrable plane field.
- (d) Give an example of three foliations on a two dimensional torus: one with every leaf compact; one with every leaf noncompact; and one with some compact and some noncompact leaves.
- 4. (a) Let G be the Lie subgroup of $GL_3(\mathbb{R})$ that consists of the following matrices:

$$\begin{pmatrix} a & b & x \\ c & d & y \\ 0 & 0 & 1 \end{pmatrix}$$

where ad-bc = 1. Find a basis for the Lie algebra of G, considered as a Lie subalgebra of $M_{3\times 3}(\mathbb{R})$.

(b) Let $\mathfrak{gl}_2(\mathbb{R})$ be the Lie algebra of $\mathrm{GL}_2(\mathbb{R})$. For

$$\begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \in \mathfrak{gl}_2(\mathbb{R})$$

find

$$\begin{bmatrix} \begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \end{bmatrix}$$

- 5. (a) State Stokes' Theorem
 - (b) Given two 3-forms on S^7 , denoted θ and ω , prove that $\int_{S^7} d\theta \wedge \omega = \int_{S^7} \theta \wedge d\omega$.

- 6. Let $S^n = \{ v \in \mathbb{R}^{n+1} \mid ||v|| = 1 \}$ and let $f : S^n \to S^n$ be the restriction of the map $\mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ given by $v \mapsto -v$. Suppose ω is an *n*-form on S^n with $\int_{S^n} \omega = \frac{\pi^2}{6}$. What is $\int_{S^n} f^* \omega$. Why?
- 7. (a) State Sard's Theorem.
 - (b) Show that any smooth map $f : SL_2(\mathbb{R}) \to S^4$ is homotopic to a constant map.
- 8. Let $M = T^2 \times S^2$, and suppose ω is a 4-form on M such that $\int_M \omega = 7$.
 - (a) Define a smooth map $f: M \to M$ that has degree 2.
 - (b) Define a 4-form θ on M such that $\int_M \theta = 56$, using both f and ω nontrivially.
- 9. (a) What theorem from multivariable calculus is the proof of the regular value theorem dependent on?
 - (b) What theorem from single variable calculus is the proof of Stokes' theorem dependent on?
 - (c) What theorem from differential topology is used to prove that transverse intersection of manifolds is a manifold?
- 10. Let M and N be smooth, closed, connected n-manifolds, and let $f: M \to N$ be a smooth map. If every point of N is a regular value, show that the cardinality of the pre-image of a point in N defines a constant function on N.

B. Answer four of the following questions.

11. Consider the following two 2-complexes, A and B, defined as identification spaces of polygons, with side identifications as indicated (so all edges are identified with each other).

Is either space homotopy equivalent to a 1-complex?

- 12. Is there a covering map $p: X \to Y$ where
 - (a) $X = S_3$, $Y = S_2$ where S_g is a closed orientable surface of genus g?

(b) X is S_3 with a small open disk removed and Y is S_2 with a small open disk removed. When p exists, what is the number of sheets? 13. Using Δ -homology, compute homology and cohomology (with \mathbb{Z} coefficients) of the following space (solid square and triangle with identifications as indicated).

- 14. Let M be a closed connected 5-manifold such that $\pi_1(M) = \mathbb{Z}/7\mathbb{Z}$ and $H_2(M;\mathbb{Z}) = \mathbb{Z}^2$. Compute $H_k(M;\mathbb{Z})$, $H^k(M;\mathbb{Z})$ and $H_k(M;\mathbb{Z}/7\mathbb{Z})$ for all k.
- 15. Describe an explicit cell decomposition of $\mathbb{C}P^n$ (including the precise subsets corresponding to cells; you don't have to check all properties of cell structures). From the cell decomposition read off all homology and cohomology groups with \mathbb{Z} coefficients.
- 16. Describe the procedure for computing (i.e. writing down a presentation of) the fundamental group of a cell complex with one 0-cell. Using this, show that $\mathbb{C}P^n$ is simply connected and $\pi_1(\mathbb{R}P^n) = \mathbb{Z}/2\mathbb{Z}$ for $n \geq 2$.
- 17. Compute the fundamental group of the space $X_{2,3}$ obtained from the cylinder $S^1 \times [-1,1]$ via identifications: $(z,-1) \sim (-z,-1)$ and $(z,1) \sim (z \ e^{\frac{2\pi i}{3}},1) \sim (z \ e^{\frac{4\pi i}{3}},1)$ for all $z \in S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$. (That is, in the circle $S^1 \times \{-1\}$ antipodal points are identified, and in $S^1 \times \{1\}$ two points are identified if they differ by an order 3 rotation.) Show that this group is infinite.
- 18. Use the Mayer-Vietoris sequence to compute homology groups (with \mathbb{Z} -coefficients) of the space $X_{2,3}$ from problem #17. Do the same for the space $X_{2,2}$ defined similarly except that on $S^1 \times \{1\}$ antipodal points are identified.