
UNIVERSITY OF TJTAH DEPARTMENT OF MATHEMATICS

Ph.D. Preliminary Examination in Differential Equations

August 13, 2012.

Instructions: The examination has two parts consisting of five problems in Part A
and five in Part H. You are to work three problems from part A
and three problems from part B. If you work more than the required
number of problems, then state which problems you wish to be graded,
otherwise the first three will be graded.

In order to receive maximum credit, solutions to problems must
be clearly and carefully presented and should be as detailed as
possible. All problems are worth 20 points. A passing score is 72.

A. Ordinary differential Equations: Do three problems for full credit

Al. Suppose A(t) is a real ii x n matrix function which is smooth in t and periodic of period
T> 0. Consider the linear differential equation in R’1

(1)
I. x(O)=xo.

Let ~(t) be the fundamental matrix solution \vith ~(0) = I.

(a) Define: Ftcquet Matrix, Ftcquet Multiplier and Ftcquet Exponent. How are these re
lated to ~(t)? State the necessary and sufficient conditions so that (1) has a nonzero
T-periodic solution.

(b) Prove that the zero solution is unstable for the system ± = A(t)x, where

1 1

o h(t)/h(t)

and h(t) = 2 + sint — cost.

A2. Let A be ann x n real matrix whose eigenvalues A~ satis~’ ll?eA~ < 0 for all i = 1 ii.

Consider the initial value problem for x0 e R’t,

with h(zt)=~i’:v (2)

1% x(O)=x0

where v e R~ is a unit vector.

(a) Show that if xof is small enough, there is a bounded solution to (2) that exists for all
time.

[Hint: Using variation-of-parameters and the fact that

lim [~ h(x, t) II /lIxW] 0
IIzlI—.o
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uniformly in t, fort > 0, obtain an integral inequality for IIzW and then apply Gronwall’s
Inequality: Suppose g(t) and u(t) are nonnegative functions and c0 ≥ 0 is a constant
that satisfy u(t) ≤ co + f g(s) U(s) ds for all t ≥ 0. Then Gronwall’s Inequality implies

u(t) ~ co exp (f: g(s) ds) for all t ≥ 0.

(b) Let z(t) = 0 for all t be the zero solution to (2). Define what it means for z to be
Lyapunov Stable. Show that z is Lyapunov stable for this equation.

A3. Consider Griffith’s model for a genetic control system, where x and y are proportional to
concentration of protein and the messenger RNA from which it is translated, respectively,
and p> 0 is a rate constant

±=y—itx

= 1 + a:2 —

(a) Show that the system has three fixed points when it < ~ and one when i~> p~ where
jt0 is to be determined.

(b) What is the nature of the bifurcation at p = Pc7

A4. Consider a Brusselator system for chemical reactants x, y given by

± = 1— 4x + z2y,

= 3x — z2y

(a) Show that the quadrilateral bounded by the lines z = 0, y = 0, y = S+x andy = 10—z
is a forward invariant subset. [Hint: need to show that if n is the outer normal to a
given edge of the quadrilateral, then n~ (±,~) SO].

(b) Find the fixed points and determine their stability.

(c) Show that the system has at least one nonconstant periodic solution.

A5. (a) State the Center Manifold Theorem for rest points. Briefly explain its importance in
bifurcation theory.

(b) Construct an approximation to the center manifold at the origin and use it to determine
the local behavior of solutions.

± = —my,

= — 2y2.

B. Partial Differential Equations. Do three problems to get full credit.

BI. Consider the second-order equation

V2u-cu=f inDcR’t

with c constant, u, f C C2(D) and

u=g onflD,

where D is bounded and ~9D is smooth.

(a) Assuming a solution u exists, show that it is unique when c> 0. Establish this using
two different methods: (i) an integral method and (ii) a Maximum Principle.
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(b) Suppose thatn= 2, c< 0, f=g =0, andD is theregionr2 =x2+y2 <1. Show
that for a0 constant,

u =

is a solution as long as ~/1E is a zero of the Bessel function Jo(x), which satisfies

d2J0 ldJ0
—r + + J0 = 0.dx xcix

(c) Suppose that it = ~, c< Of = g = 0, and D is the region 1< x2+y2+z2 <4. Show
that there are non-trivial solutions if c —n21r2, n = 1,2,3

B2. Suppose that p(x, t) is the number density of cars per unit length along a road, x being
distance along the road, such that

—oôt Bx —

(a) Show that p is constant along the characteristics

dx
-~ = 1 — 2p,

and derive the following Rankine-Hugoniot condition for the speed of a shock x =

dS [p(l—p)jt
dt [p]t

(b) A queue is building up at a traffic light x = 1 so that, when the light turns to green
att=0,

lo, ifxcOandx>1;
p(x,0) =

if0<x<1.

Solve the corresponding characteristic equations, and sketch the resulting characteristic
curves. Deduce that a collision first occurs at x = 1/2 when t = 1/2, and that thereafter
there is a shock such that

dS — S + t — 1
~ U

B3. According to Maxwell’s Equations, the static magnetic field H = (H1,H2,H3)T in an
inhomogeneous medium satisfies

V.QzH)=O, VxH=0,

where p is a space-dependent permeability. Suppose the interface z = 0 separates a medium
in which p = p~ from one in which p = ~z_ with p~ constants.

(a) Define the weak solution: for every given simply connected, smooth domain [2~ C F
and arbitrary embedded smooth two dimensional surface with boundary Q2 C F,
assuming enough regularity, integrate by parts the equations

f~bV.(itH)dV=0, ~
where ~ is an arbitrary, suitable test function.
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(b) Taking Q~ td be a cylindrical domain that cuts the interface vertically, use Green’s
Theorem to show that

[pHa]t=O

(c) Taking f22 to be a rectangular surface that cuts the interface vertically, use Stokes’
Theorem to show that

[H1]t = 0 = [H2]t.

B4. Let u solve the initial value problem

= 0, hi Rx (0,oo),

u=g, u~=h, onlkx{0}.

Suppose g, h have compact support. Define the kinetic energy k(t) = ~ f°~ u~(x, t) dx and
the potential energy p(t) = ~ ~ u~(x, t) dx. Prove

(a) The total energy E = k(t) + p(t) is constant in t.

(b) Assume that there are two distinct solutions it, v to the initial value problem. By
considering the energy of the difference solution U = it — v, prove that it = v, that is,
the solution is unique.

115. (a) For a smooth domain D C R”, solve Poisson’s equation

V2u=finD, ~=gon8D

in terms of an appropriately defined Green’s function.

(b) Show that the two—dimensional Green’s function for the Laplacian in an unbounded
domain is

G(x,x’) = —lnIx—x’I.

(c) Use the method of images to derive the Green’s function for the Laplacian in the half—
space x c It, y > 0 with a Neumann boundary condition on y = 0, and evaluate the
corresponding solution of part (a) when f = 0.
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