PhD Preliminary Qualifying Examination: Differential equations (6410/20)

August 2008
Instructions: Answer three questions from part A and three questions from part B. Indicate clearly which questions you wish to be graded.

Part A.

1. Consider the linear non-autonomous first order system

$$
\dot{x}=A x+B(t) x, \quad x \in \mathbf{R}^{n}
$$

with A non-singular and $B(t)$ continuous for $t \geq 0$. Further, assume that

- the eigenvalues of A have non-positive real parts and those with zero real part are non-degenerate
- $\int_{0}^{\infty}\|B(t)\| d t=c_{1}$ with c_{1} a positive constant.
(a) Let $\Phi(t)$ be the fundamental matrix of the equation $\dot{x}=A x$ with $\Phi(0)=I$. Derive the variation of constants formula

$$
x(t)=\Phi(t) x(0)+\int_{0}^{t} \Phi(t-s) B(s) x(s) d s
$$

(b) Prove that the solution $x(t)$ is bounded for all times $t>0$. [Hint: Use part (a) and Gronwall's lemma in the following form: $v(t) \leq v_{0}+\int_{0}^{t} u(s) v(s) d s$ implies that $v(t) \leq$ $v_{0} \exp \left(\int_{0}^{t} u(s) d s\right)$ for $\left.t>0\right]$. What does this imply about the stability of the origin?
2. Consider the T-periodic non-autonomous linear differential equation

$$
\dot{x}=A(t) x, \quad x \in \mathbf{R}^{n}, \quad A(t)=A(t+T)
$$

Let $\Phi(t)$ be a fundamental matrix with $\Phi(0)=\mathbf{I}$.
(a) Show that there exists at least one nontrivial solution $\chi(t)$ such that

$$
\chi(t+T)=\mu \chi(t)
$$

where μ is an eigenvalue of $\Phi(T)$.
(b) Suppose that $\Phi(T)$ has n distinct eigenvalues $\mu_{i}, i=1, \ldots, n$. Show that there are then n linearly independent solutions of the form

$$
x_{i}=p_{i}(t) \mathrm{e}^{\rho_{i} t}
$$

where the $p_{i}(t)$ are T-periodic. How is ρ_{i} related to μ_{i} ?
(c) Consider the equation $\dot{x}=f(t) A_{0} x, x \in \mathbf{R}^{2}$, with $f(t)$ a scalar T-periodic function and A_{0} a constant matrix with real distinct eigenvalues. Determine the corresponding Floquet multipliers.
3. Consider the scalar equation

$$
\ddot{x}+\dot{x}=-\varepsilon\left(x^{2}-x\right), \quad 0<\varepsilon \ll 1
$$

Using the method of multiple scales show that the $\mathcal{O}(1)$ solution is

$$
x_{0}(t, \tau)=A(\tau)+B(\tau) \mathrm{e}^{-t}
$$

where $\tau=\varepsilon$, and identify any resonant terms at $\mathcal{O}(\varepsilon)$. Show that the non-resonance condition for the amplitude A is

$$
A_{\tau}=A-A^{2}
$$

and hence determine the asymptotic behavior of x_{0}. Comment on the domain of validity of the asymptotic expansion.
4. Consider the scalar differential equation

$$
\ddot{x}+x=-\varepsilon f(x, \dot{x})
$$

with $|\varepsilon| \ll 1$. Let $y=\dot{x}$.
(a) Show that if $E(x, y)=\left(x^{2}+y^{2}\right) / 2$ then

$$
\dot{E}=-\varepsilon f(x, y) y
$$

Hence show that an approximate periodic solution of the form $x=A \cos t+\mathcal{O}(\varepsilon)$ exists if

$$
\int_{0}^{2 \pi} f(A \cos t,-A \sin t) \sin t d t=0
$$

(b) Let $E_{n}=E(x(2 \pi n), y(2 \pi n))$ with $x(t)=A_{n} \cos t+\mathcal{O}(\epsilon)$ for $2 \pi n \leq t<2 \pi(n+1)$. Show that to lowest order E_{n} satisfies a difference equation of the form

$$
E_{n+1}=E_{n}+\varepsilon F\left(E_{n}\right)
$$

and write down $F\left(E_{n}\right)$ explicitly as an integral. Hence deduce that a periodic orbit with approximate amplitude $A^{*}=\sqrt{2 E^{*}}$ exists if $F\left(E^{*}\right)=0$ and this orbit is stable if

$$
\varepsilon \frac{d F}{d E}\left(E^{*}\right)<0
$$

(c) Using the above result, find the approximate amplitude of the periodic orbit of the van der Pol equation

$$
\ddot{x}+x+\varepsilon\left(x^{2}-1\right) \dot{x}=0
$$

and verify that it is stable.
5. The displacement x of a spring-mounted mass under the action of dry friction is assumed to satisfy

$$
\ddot{x}+x=F_{0} \operatorname{sgn}\left(v_{0}-\dot{x}\right)
$$

(a) Calculate the phase paths in the (x, y) plane and draw the phase diagram. Deduce that the system ultimately converges into a limit cycle oscillation. What happens when $v_{0}=0$?
(b) Suppose $v_{0}=0$ and the initial conditons at $t=0$ are $x=x_{0}>3 F_{0}$ and $\dot{x}=0$. Subsequently, whenever $x=-\alpha$, where $2 F_{0}-x_{0}<-\alpha<0$ and $\dot{x}>0$, a trigger operates to increase suddenly the forward velocity so that the kinetic energy increases by a constant amount E. Show that if $E>8 F_{0}^{2}$ then a periodic motion is approached, and show that the largest value of x in the periodic motion is equal to $F_{0}+E /\left(4 F_{0}\right)$.

Part B.

1. Consider the scalar linear equation

$$
a \frac{\partial u}{\partial x}+b \frac{\partial u}{\partial y}=\alpha u
$$

with a, b, α differentiable functions of x, y. Suppose that u is prescribed on some arc Γ (Cauchy data).
(a) By introducing a test function ψ that vanishes on an arbitrary curve γ and applying Green's theorem to the domain D bounded by $\partial D=\Gamma \cup \gamma$, derive the integral equation for a weak solution to the Cauchy problem.
(b) Extend the analysis to the case where u is discontinuous across an open curve C_{0} within the domain D. Hence show that C_{0} is a characteristic projection.
(c) Write down the generalization of part (b) to the case of the quaslinear equation

$$
\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}=c
$$

where P, Q, c are differentiable functions of x, y, u, and hence derive the Rankine-Hugonoit condition.
2. Paint flowing down a wall has thickness $u(x, t)$ satisfying (for $t>0$)

$$
\frac{\partial u}{\partial t}+u^{2} \frac{\partial u}{\partial x}=0 .
$$

(a) Show that the characteristics are straight lines and that the Rankine-Hugoniot condition on a shock $x=S(t)$ is

$$
\frac{d S}{d t}=\frac{\left[u^{3} / 3\right]_{-}^{+}}{[u]_{-}^{+}}
$$

(b) A stripe of paint is applied at $t=0$ so that

$$
u(x, 0)=\left\{\begin{array}{cc}
0, & x<0 \text { or } x>1 \\
1, & 0<x<1
\end{array}\right.
$$

For sufficiently small t, determine u in the domains $x<0,0<x<t, t<x<S(t)$ and $S(t)<x$, where the shock is $x=S(t)=1+t / 3$
(c) Explain why the solution changes at $t=3 / 2$ and show that thereafter $\dot{S}=S / 3 t$.
3. (a) Consider the three-dimensional wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u
$$

with Cauchy data

$$
u(\mathbf{x}, 0)=0, \frac{\partial u}{\partial t}(\mathbf{x}, 0)=g(\mathbf{x})
$$

(a) Show that radially symmetric solutions are in the form of outgoing and incoming waves

$$
u(r, t)=\frac{1}{r} F(r \pm c t) .
$$

[Hint: Perform the substitution $v=u r$].
(b) Writing the general solution to the Cauchy problem as a superposition of outgoing waves

$$
u(\mathbf{x}, t)=\int_{\mathbf{R}^{3}} \frac{\delta(r-c t)}{r} f\left(x^{\prime}, y^{\prime}, z^{\prime}\right) d x^{\prime} d y^{\prime} d z^{\prime}
$$

where $r^{2}=\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}$, derive the retarded potential solution

$$
u(\mathbf{x}, t)=c t \int_{0}^{2 \pi} \int_{0}^{\pi} f(x+c t \sin \theta \cos \phi, y+c t \sin \theta \sin \phi, z+c t \cos \theta) \sin \theta d \theta d \phi
$$

and show that $f=g / 4 \pi c$.
(c) Assuming that the initial data g is only nonzero in a bounded domain D, use a graphical construction to derive Huygen's principle.
4. (a) Show that if the real symmetric matrix \mathbf{A} has real eigenvalues λ_{i} and orthogonal eigenvectors \mathbf{x}_{i}, then for any vector $\mathbf{y}=\sum_{i} c_{i} \mathbf{x}_{i}$, the smallest eigenvalue satisfies

$$
\lambda_{0} \leq \frac{\mathbf{y}^{T} \mathbf{A} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} .
$$

(b) Show that the eigenfunctions ϕ and eigenvalues $-\lambda$ of the problem

$$
\nabla^{2} \phi+\lambda \phi=0 \text { in a region } D
$$

with

$$
\frac{\partial \phi}{\partial n}+\alpha \phi=0 \text { on } \partial D,
$$

where $\partial / \partial n$ is the outward normal derivative, satisfy

$$
\lambda \int_{D} \phi^{2} d \mathbf{x}=\int_{D}|\nabla \phi|^{2} d \mathbf{x}+\alpha \int_{\partial D} \phi^{2} d s
$$

Assuming that the eigenfunctions ϕ form a complete orthonormal set, derive an upper bound for the smallest eigenvalue in terms of an appropriate energy integral (Rayleigh quotient).
5. (a) Solve Poisson's equation

$$
\nabla^{2} u=f \text { in } D, u=g \text { on } \partial D
$$

in terms of an appropriately defined Green's function.
(b) Show that the two-dimensional Green's function for the Laplacian in an unbounded domain is

$$
G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{2 \pi} \ln \left|\mathbf{x}-\mathbf{x}^{\prime}\right| .
$$

(c) Use the method of images to derive the Green's function for the Laplacian in the half-space $x \in \mathbf{R}, y>0$ with a Dirichlet boundary condition on $y=0$, and evaluate the corresponding solution of part (a) when $f=0$.

