
UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS

Ph.D. Preliminary Examination in Differential Equations

January 5, 2018.

Instructions: This examination has two parts consisting of six problems in

part A and five in part B. You are to work three problems from

part A and three problems from part B. If you work more than the

required number of problems, then state which problems you wish

to be graded, otherwise the first three will be graded.

In order to receive maximum credit, solutions to problems must be

clearly and carefully presented and should be detailed as possible.

All problems are worth [20] points. A passing score is 72.

A. Ordinary Differential Equations: Do three problems for full credit

A1. Let p(t), q(t) and r(t) be continuous functions defined for t ∈ R and t0, x0, x1 ∈ R. Consider
the initial value problem {

ẍ+ p(t) ẋ+ q(t)x = r(t)

x(t0) = x0, ẋ(t0) = x1.
(1)

(a) Let X be a Banach Space with norm ‖ • ‖. Let C ⊂ X be a closed subset. State the
Contraction Mapping Theorem (otherwise known as the Banach Fixed Point Theorem)
for a map K : C → X.

(b) Carefully reformulate (1) as a fixed point problem. Prove that the fixed point problem
is equivalent to the local existence problem for (1).

(c) Using the Contraction Mapping Theorem, show that there is a δ > 0 and a unique
function x(t) ∈ C2([t0, t0 + δ]) that satisfies your fixed point problem, and hence (1),
for t0 ≤ t ≤ t0 + δ.

A2. Assuming the local existence result in Problem A1 for equation (1), show that in fact a
unique solution exists globally for all t ∈ R.

A3. (a) Let f(x) ∈ C1(Rn,Rn) satisfy f(0) = 0. State the definitions: the zero solution of
dx

dt
= f(x),

x(0) = x0,

is Stable, Asymptotically Stable and Unstable.

(b) Show that the zero solution is asymptotically stable.{
ẋ = xy − x3

ẏ = −y + x3y

(c) Suppose that the real n×n matrix A has an eigenvalue with <e λ > 0. Prove that the
zero solution of ẋ = Ax is unstable.

A4. (a) Let A(t) be a continuous, non-constant, real matrix-valued, T > 0 periodic function
A(t+ T ) = A(t). For the system

ẋ = A(t)x (2)

define: Monodromy Matrix, Floquet Multipliers and Floquet Exponents.
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(b) If eTγ = ρ is a Floquet multiplier, then there is a solution of (2) of the form

x(t) = eγtp(t)

where p(t) = ±p(t+ T ).

(c) Let a, b ∈ R. Suppose that a Floquet multiplier is µ1 = −1. What can you say about
the boundedness of all solutions on [0,∞)?(

ẋ

ẏ

)
=

(
−1 a

b sin(πt)

)(
x

y

)
A5. Consider Rayleigh’s equation

ẍ+ ẋ3 − 2µẋ+ x = 0.

What kind of bifurcations occur to the equilibrium point of system as the parameter µ is
varied? Determine the bifurcation values and describe how the solutions change near the
bifurcation point.

A6. Let f(x) ∈ C1(Rn,Rn) have a non-constant, T > 0 periodic trajectory γ(t) satisfying
γ̇(t) = f(γ(t)).

(a) Define: the periodic solution γ(t) is orbitally stable.

(b) Define: the Poincaré Map for the orbit γ.

(c) Find a periodic solution γ(t) to{
ẋ = x− y − x

(
x2 + y2

)
,

ẏ = x+ y − y
(
x2 + y2

)
.

Determine the orbital stability of γ(t) by computing the derivative of its Poincaré Map.

B. Partial Differential Equations. Do three problems to get full credit

B1. The small longitudinal free vibrations of an elastic bar are governed by the following equa-
tion:

ρ(x)
∂2u

∂t2
=

∂

∂x

[
E(x)

∂u

∂x

]
.

Here u is the longitudinal displacement, ρ is the linear density of the material and E is its
Young’s modulus. Assume that the bar is constructed by welding together two bars of differ-
ent (constant) Young’s moduli E1, E2 and densities ρ1, ρ2, respectively. The displacement
u is continuous across the junction, which is located at x = 0.

(a) Give a weak formulation of the global initial value problem, and use this to derive the
following jump condition:

E1ux(0−, t) = E2ux(0+, t), t > 0.

(b) Let c2j = Ej/ρj . A left incoming wave uI(x, t) = ei(t−x/c1) produces at the junction

a reflected wave uR(x, t) = R ei(t+x/c1) and a transmitted wave uT = T ei(t−x/c2).
Determine the reflection and transmission coefficients R, T , and interpret the result.
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B2. Consider the problem of a thin layer of paint of thickness h(x, t) and speed u(x, y, t) flowing
down a wall, see Fig. 1. The paint is assumed to be uniform in the z-direction. The balance
between gravity and viscosity (fluid friction) means that the velocity satisfies the equation

∂2u

∂y2
= −c,

where c is a positive constant. This is supplemented by the boundary conditions

u(x, 0, t) = 0,
∂u(x, y, t)

∂y

∣∣∣∣
y=h

= 0.

The density of paint per unit length in the x-direction is ρ0h(x, t) where ρ0 is a constant,
and the corresponding flux is

q(x, t) = ρ0

∫ h

0

u(x, y, t) dy.

(a) Using conservation of paint, and solving for u(x, y, t) in terms of h(x, t) and y, derive
the following PDE for the thickness h:

∂h

∂t
+ ch2

∂h

∂x
= 0.

(b) Set c = 1. Show that the characteristics are straight lines and that the Rankine-
Hugoniot condition on a shock x = S(t) is

dS

dt
=

[h3/3]+−
[h]+−

.

(c) A stripe of paint is applied at t = 0 so that

h(x, 0) =


0, x < 0 or x > 1

1, 0 < x < 1.

Show that, for small enough t,

h =



0, x < 0

(x/t)1/2, 0 < x < t

1, t < x < S(t)

0, S(t) < x,

where the shock is x = S(t) = 1 + t/3.

(d) Explain why this solution changes at t = 3/2, and show that thereafter

dS

dt
=
S

3t
.
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B3. Consider the following inhomogeneous initial-Neumann problem:

ut = Duxx + αtx, 0 < x < π, 0 < t,

u(x, 0) = 1, 0 < x < π,

ux(0, t) = ux(π, t) = 0, 0 < t;

where α is a constant.

(a) Determine the eigenfunctions of the homogeneous equation

uxx = λu, 0 ≤ x ≤ π, ux(0) = ux(π) = 0.

(b) Solve the inhomogeneous initial-Neumann problem by carrying out an eigenfunction
expansion of u(x, t) in terms of the eigenfunctions obtained in part (a). That is,
denoting the eigenfunctions by vk, integer k, set

u(x, t) =
∑
k≥0

ck(t)vk(x),

and determine the time-dependent coefficients ck(t).

(c) Give a physical interpretation of the solution in the limit α→ 0.

B4. Consider the wave equation

utt − c2uxx = 0, t > 0, x ∈ R.

along with initial conditions

u(x, 0) = g(x), ut(x, 0) = h(x).

(a) Assuming c is constant, derive d’Alembert’s Formula

u(x, t) =
1

2
[g(x+ ct) + g(x− ct)] +

1

2c

∫ x+ct

x−ct
h(ξ) dξ.

(b) Determine the solution for the initial data u(x, 0) = 1 if |x| < a, u(x, 0) = 0 if x > |a|;
ut(x, 0) = 0

(c) Determine the solution for the initial data u(x, 0) = 0; ut(x, 0) = 1 if |x| < a, ut(x, 0) =
0 if x > |a|

B5. Suppose that u(x) is a C2 harmonic function in the domain Ω ⊂ Rn, so ∆u = 0 in Ω.

(a) Prove the mean value property: if x ∈ Ω and r > 0 is chosen such that Br(x) ⊂ Ω
(ball of radius r centered at x) then

u(x) =
1

ωnrn−1

∫
∂Br(x)

u(s)ds,

where ωn is the measure of ∂B1. Hence show that

u(x) ≤ n

ωnrn

∫
Br(x)

u(y)dy.

(b) Assuming Ω is connected, prove that u can attain its maximum value at an interior
point x ∈ Ω, only if u is constant.
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