
UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS

Ph.D. Preliminary Examination in Differential Equations

January 5th, 2017.

Instructions: This examination has two parts consisting of five problems in

part A and five in part B. You are to work three problems from

part A and three problems from part B. If you work more than the

required number of problems, then state which problems you wish

to be graded, otherwise the first three will be graded.

In order to receive maximum credit, solutions to problems must be

clearly and carefully presented and should be as detailed as possible.

All problems are worth 20 points.

A. Ordinary Differential Equations: Do three problems for full credit

A1. (a) Find the first three successive approximations u1(t), u2(t), u3(t) for the initial value
problem (IVP)

ẋ = x2, x(0) = 1.

Use mathematical induction to show that for all n ≥ 1, un(t) = 1+t+· · ·+tn+O(tn+1)
as t→ 0.

(b) Solve the IVP in part (a) and show that the function x(t) = 1/(1− t) is a solution to
the IVP on the interval (−∞, 1). Compare with the approximation of part (a)

(c) Let f ∈ C1(U,Rn) for U ⊂ R
n and x0 ∈ U . Given the Banach space X = C([0, T ],Rn)

with norm ‖x‖ = max0≤t≤T |x(t)|, let

K(x)(t) = x0 +

∫ t

0

f(x(s))ds

for x ∈ X . Define V = {x ∈ X | ‖x− x0‖ ≤ ǫ} for fixed ǫ > 0 and suppose K(x) ∈ V
(which holds for sufficiently small T ), so that K : V → V with V a closed subset of X .
Using the fact that f is locally Lipschitz in U with Lipschitz constant L0, and taking
x, y ∈ V show that

|K(x(t))−K(y(t))| ≤ L0t‖x− y‖.
Hence, show that

‖K(x)−K(y)‖ ≤ L0T ‖|x− y‖ x, y ∈ V.

A2. Suppose A(t) is a real n × n matrix function which is smooth in t and periodic of period
T > 0. Consider the linear differential equation in Rn







dx

dt
= A(t)x,

x(0) = x0.
(1)

Let Φ(t) be the fundamental matrix solution with Φ(0) = I.

(a) Suppose that Φ(T ) has n distinct eigenvalues µi, i = 1, . . . , n. Show that there are
then n linearly independent solutions of the form

xi = pi(t)e
ρit

where the pi(t) are T –periodic. How is ρi related to µi?
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(b) Prove that the zero solution is unstable for the system ẋ = A(t)x, where

A(t) =









1 1

0 ḣ(t)/h(t)









,

and h(t) = 2 + sin t− cos t.

(c) Suppose that the autonomous nonlinear equation ẋ = f(x) exhibits a limit cycle.
Explain how Floquet theory can be used to determine the linear stability of the limit
cycle

A3. Consider the following linear equation for x ∈ R
n:

ẋ = A+B(t)x, x(t0) = x0.

whereA,B(t) are n×nmatrices. Suppose that all eigenvalues λj , j = 1, . . . , n, of the matrix
A satisfy Re(λj) < 0, and let B(t) be continuous for 0 ≤ t <∞ with

∫∞

0 ‖B(t)‖dt <∞.

(a) Using the variation of constants formula show that there exist constants K,σ > 0 such
that

|x(t)| ≤ Ke−σ(t−t0)|x0|+K

∫ t

t0

e−σ(t−s)|x(s)|‖B(s)‖ds.

(b) Let u(t) = eσt|x(t)|, v(t) = ‖B(t)‖ and c = Keσt0 |x0|. Show that the inequality of
part (a) can be rewritten as

u(t) ≤ c+

∫ t

t0

v(s)u(s)ds.

(c) From Gronwall’s inequality we have

u(t) ≤ c exp

(∫ t

t0

v(s)ds

)

.

Use this to show that the zero solution of the IVP is asymptotically stable.

A4. Consider the differential operator acting on L2(R),

L = − d2

dx2
, 0 ≤ x <∞

with self-adjoint boundary conditions ψ(0)/ψ′(0) = tan θ for some fixed angle θ.

(a) Show that when tan θ < 0 there is a single negative eigenvalue with a normalizable
eigenfunction ψ0(x) localized near the origin, but none when tan θ > 0.

(b) Show that there is a continuum of eigenvalues λ = k2 with eigenfunctions ψk(x) =
sin(kx+ η(k)), where the phase shift η is found from

eiη(k) =
1 + ik tan θ√
1 + k2 tan2 θ

.

(c) Evaluate the integral

I(x, x′) =
2

π

∫ ∞

0

sin(kx+ η(k)) sin(kx′ + η(k))dk,
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and interpret the result with regards the relationship to the Dirac Delta function and
completeness, that is, δ(x − x′) − I(x, x′) = ψ0(x)ψ0(x

′). You will need the following
standard integral

∫ ∞

−∞

eikx
1

1 + k2t2
dk

2π
=

1

2|t|e
−|x/t|.

HINT: you should monitor how the bound state contribution (for tan θ < 0) switches
on and off as θ is varied. Keeping track of the modulus signs | . . . | in the standard
integral is crucial for this.

A5. (a) Consider the dynamical system

ẋ = −y + x(1− z2 − x2 − y2)

ẏ = x+ y(1− z2 − x2 − y2)

ż = 0.

Determine the invariant sets and attracting set of the system. Give a general definition
of the ω–limit set, and determine it in the case of a trajectory for which |z(0)| < 1.
Sketch the flow.

(b) Use the Poincare-Bendixson (PB) Theorem and the fact that the planar system

ẋ = x− y − x3, ẏ = x+ y − y3

has only the one critical point at the origin to show that this system has a periodic
orbit in the annular region A = {x ∈ R2 | 1 < |x| <

√
2}.
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B. Partial Differential Equations. Do three problems to get full credit

B1. Does the partial differential equation

∂u

∂t
− ∂u

∂x
= −u

subject to the restriction that u = exp(−x2) on the curve t = x2 have a solution? If it does
have a solution, indicate for what ranges of x and t this solution is uniquely defined and if
it does not have a solution, explain why.

B2. The Ornstein-Uhlenbeck (OU) differential equation is

∂p

∂t
=

∂

∂x
(kxp) +D

∂2p

∂x2
.

(a) What type of partial differential equation is this? What calculation is needed to justify
this statement?

(b) If t has units of time and x has units of length, what are the units of the parameters
k and D?

(c) Express this equation in nondimensional variables? How many nondimensional pa-
rameters remain after nondimensionalization?

(d) Find the solution of the OU equation on the domain −∞ < x <∞, t ≥ 0 with initial
data p(x, 0) = δ(x − x0) for arbitrary x0. Give an interpretation of this solution in
terms of a probability.

B3. Suppose the wave equation

∂2u

∂t2
− c2∇2u = 0, x ∈ R

n, t > 0,

subject to initial conditions u(x, 0) = 0, ∂u
∂t (x, 0) = h(x), for x ∈ R

n has a solution denoted
by uh. Find (and verify) the solution of the same equation subject to the initial conditions

u(x, 0) = g(x), ∂u(x,0)
∂t = h(x), for x ∈ R

n in terms of uh and ug.

B4. Consider the partial differential equation defined for −∞ < x <∞

∂u

∂t
− ∂2u

∂x2
= χ(x)f(u), χ(x) =















0 0 < x < L

1 elsewhere

with f(u) a bistable function, f(0) = f(a) = f(1) = 0, 0 < a < 1, f ′(0) < 0, f ′(1) < 0 and
∫ 1

0
f(u)du > 0.

(a) Prove that for all L > 0 sufficiently large, there is a standing, monotone increasing C1

profile with limiting behavior u(−∞) = 0, u(∞) = 1.

(b) State a comparison theorem that can be used to show that if L is sufficiently large,
the region 0 < x < L acts as a “blocking region” to propagation for this equation.

B5. (a) Suppose an initial profile u0(x) is monotone with limx→−∞ u0(x, ) = uL, limx→∞ u0(x) =
uR. Under what conditions on uL and uR does the solution of Burger’s equation

∂u

∂t
+ u

∂u

∂x
= 0,

evolve into a shock, and what is its asymptotic speed?
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(b) Consider the viscous Burger’s equation

∂u

∂t
+ u

∂u

∂x
= ǫ

∂2u

∂x2
.

with ǫ > 0. Under what conditions on uL and uR, where limx→−∞ u(x, t) = uL,
limx→∞ u(x, t) = uR does this equation have a travelling wave solution, and what is
its speed? Verify your result.
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