PhD Preliminary Qualifying Examination
 Applied Mathematics

Wednesday January 62016
Instructions: Answer three questions from Part A and three questions from Part B. Indicate clearly which questions you wish to have graded.

Part A.

1. Let X be a Banach space, let $z \in X$ with $z \neq 0$, and let $f \in X^{\prime}$ with $f \neq 0$. Consider the linear operator $T: X \rightarrow X$ defined for $x \in X$ by

$$
T x=f(x) z
$$

(a) Briefly explain why T is compact.
(b) Use Neumann series to give a condition on f and z that ensures the equation $x+T x=y$ admits a unique solution x for all $y \in X$.
(c) Use the Fredholm alternative to find a condition on f and z that ensures the equation $x+T x=y$ admits a unique solution x for all $y \in X$.
2. Let X and Y be normed vector spaces. Show that a linear operator $T: X \rightarrow Y$ is compact if and only if for every sequence $\left(x_{n}\right)$ with $\left\|x_{n}\right\| \leq 1$, the sequence $\left(T x_{n}\right)$ has a convergent subsequence.
3. Let T be a bounded linear operator on a complex Hilbert space H. Show that the operator $I+T^{*} T$ is injective.
4. Let Y be a subspace of a Hilbert space H. Show that Y is closed if and only if $Y=Y^{\perp \perp}$.
5. Let X be a Banach space. Let $\left(f_{n}\right)$ be a sequence in X^{\prime}.
(a) Show that $f_{n} \rightarrow f$ weakly in X^{\prime} implies that for all $x \in X$, we have $f_{n}(x) \rightarrow f(x)$.
(b) If there is an $f \in X^{\prime}$ such that $f_{n}(x) \rightarrow f(x)$ for all $x \in X$, does $f_{n} \rightarrow f$ weakly in X^{\prime} ? Explain your answer.

Part B.

1. Find the sum

$$
\cos x+\cos 3 x+\cos 5 x+\ldots+\cos 99 x
$$

2. Prove the fundamental theorem of algebra:

Every polynomial of degree $n(\geq 1)$ has exactly n zeros (each zero being counted according to its multiplicity).
3. Evaluate the integrals
(a) $\quad \int_{-\infty}^{\infty} \frac{\sin x}{x} d x$,

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{\alpha}}{x+1} d x \tag{b}
\end{equation*}
$$

4. Show that Fourier transform

$$
f(x) \rightarrow F(\mu)=\int_{-\infty}^{\infty} f(x) e^{i \mu x} d x
$$

preserves the inner product and the L_{2} norm (Plancherel's equations):

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \bar{f}(x) g(x) d x
\end{aligned}=\int_{-\infty}^{\infty} \bar{F}(\mu) G(\mu) \frac{d \mu}{2 \pi}, ~ 子 \quad \text { and } \quad \int_{-\infty}^{\infty}|f(x)|^{2} d x=\int_{-\infty}^{\infty}|F(\mu)|^{2} \frac{d \mu}{2 \pi} .
$$

(denotes complex conjugation).
5. Solve Laplace's equation

$$
\phi_{x x}+\phi_{y y}=0 \quad \text { in the domain } \quad D=\{z:|z-1|>1,|z-2|<2\}
$$

subject to the boundary condition

$$
\phi(x, y)=a \text { when }|z-1|=1 \quad \text { and } \quad \phi(x, y)=b \text { when }|z-2|=2
$$

(a and b are real parameters).

