PhD Preliminary Qualifying Examination

Applied Mathematics

Wednesday January 6 2016

Instructions: Answer three questions from Part A and three questions from Part B. Indicate clearly which questions you wish to have graded.

Part A.

1. Let X be a Banach space, let $z \in X$ with $z \neq 0$, and let $f \in X'$ with $f \neq 0$. Consider the linear operator $T: X \to X$ defined for $x \in X$ by

$$Tx = f(x)z$$

- (a) Briefly explain why T is compact.
- (b) Use **Neumann series** to give a condition on f and z that ensures the equation x + Tx = y admits a unique solution x for all $y \in X$.
- (c) Use the **Fredholm alternative** to find a condition on f and z that ensures the equation x + Tx = y admits a unique solution x for all $y \in X$.
- 2. Let X and Y be normed vector spaces. Show that a linear operator $T: X \to Y$ is compact if and only if for every sequence (x_n) with $||x_n|| \le 1$, the sequence (Tx_n) has a convergent subsequence.
- 3. Let T be a bounded linear operator on a complex Hilbert space H. Show that the operator $I + T^*T$ is injective.
- 4. Let Y be a subspace of a Hilbert space H. Show that Y is closed if and only if $Y = Y^{\perp \perp}$.
- 5. Let X be a Banach space. Let (f_n) be a sequence in X'.
 - (a) Show that $f_n \to f$ weakly in X' implies that for all $x \in X$, we have $f_n(x) \to f(x)$.
 - (b) If there is an $f \in X'$ such that $f_n(x) \to f(x)$ for all $x \in X$, does $f_n \to f$ weakly in X'? Explain your answer.

Part B.

1. Find the sum

$$\cos x + \cos 3x + \cos 5x + \ldots + \cos 99x.$$

- 2. Prove the fundamental theorem of algebra: Every polynomial of degree $n(\geq 1)$ has exactly n zeros (each zero being counted according to its multiplicity).
- 3. Evaluate the integrals

(a)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx,$$

(b)
$$\int_{0}^{\infty} \frac{x^{\alpha}}{x+1} dx.$$

4. Show that Fourier transform

$$f(x) \to F(\mu) = \int_{-\infty}^{\infty} f(x) e^{i\mu x} dx$$

preserves the inner product and the L_2 norm (Plancherel's equations):

$$\int_{-\infty}^{\infty} \bar{f}(x) g(x) dx = \int_{-\infty}^{\infty} \bar{F}(\mu) G(\mu) \frac{d\mu}{2\pi},$$

and
$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |F(\mu)|^2 \frac{d\mu}{2\pi}.$$

(denotes complex conjugation).

5. Solve Laplace's equation

$$\phi_{xx} + \phi_{yy} = 0$$
 in the domain $D = \{z : |z - 1| > 1, |z - 2| < 2\}$

subject to the boundary condition

$$\phi(x,y)=a \text{ when } |z-1|=1 \quad \text{ and } \quad \phi(x,y)=b \text{ when } |z-2|=2$$

(a and b are real parameters).