PhD Preliminary Qualifying Examination Applied Mathematics

January 72015
Instructions: Answer three questions from Part A and three questions from Part B. Indicate clearly which questions you wish to have graded.

Part A.

1. Let M be a subset of a Hilbert space H. The goal of this problem is to show that:

$$
\overline{\operatorname{span} M}=H \text { if and only if } M^{\perp}=\{0\} .
$$

(a) Assume $\overline{\operatorname{span} M}=H$ and let $x \in M^{\perp}$. Show that $x=0$.
(b) Assume $M^{\perp}=\{0\}$. Show that $\overline{\operatorname{span} M}=H$.
2. Let $\left(x_{n}\right)$ be a sequence in a Hilbert space H. Show that:

$$
x_{n} \rightarrow x \text { strongly if and only if }\left(x_{n} \rightarrow x \text { weakly and }\left\|x_{n}\right\| \rightarrow\|x\|\right)
$$

3. Let u, v be non-zero elements of a Hilbert space H. Consider the linear operator $T: H \rightarrow H$ defined for $x \in H$ by $T x=u\langle x, v\rangle$.
(a) Briefly explain why the operator T is compact.
(b) Find a condition on u and v that guarantees that the equation

$$
(I-T) x=y
$$

admits a unique solution x for all $y \in H$.
4. Let $\left(\lambda_{n}\right) \in \ell^{2}$ and consider the operator $T: \ell^{2} \rightarrow \ell^{2}$ defined by $y=T x$, where $x=\left(\xi_{j}\right) \in \ell^{2}$, $y=\left(\eta_{j}\right) \in \ell^{2}$ and

$$
\eta_{j}=\sum_{k=1}^{\infty} \alpha_{j k} \xi_{k}, j=1,2, \ldots
$$

where the $\alpha_{j k}$ satisfy

$$
\sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left|\alpha_{j k}\right|^{2}<\infty
$$

Show that T is a compact operator. Hint: Approximate T with finite rank operators T_{n}.
5. Let $T: X \rightarrow X$ be a bounded linear operator defined on a Banach space X. Denote by R_{λ} the resolvent operator associated with T for some $\lambda \in \rho(T)$. The resolvent set of T is denoted by $\rho(T)$.
(a) Use Neumann series to show that for $\lambda, \mu \in \rho(T)$,

$$
R_{\lambda}=\sum_{j=0}^{\infty}(\lambda-\mu)^{j} R_{\mu}^{j+1}
$$

where the series is absolutely convergent in the operator norm when

$$
|\lambda-\mu|<\left\|R_{\mu}\right\|^{-1} .
$$

(b) Deduce from part (a) whether the spectrum $\sigma(T)$ is open, closed or neither.

Part B.

1. Find the radius of convergence of the Taylor series with the center at the origin ($x_{0}=0$) for the following function

$$
\begin{array}{ll}
\text { (a) } & f(x)=\frac{\sqrt{x+3}}{x^{2}+3} \\
\text { (b) } & f(x)=\frac{1}{(\cos x+3)^{2}}
\end{array}
$$

(x is a real variable; you do not need to find the series themselves).
2. Let D_{1} and D_{2} be two disjoint domains, whose boundaries share a common curve Γ. Let

- $f(z)$ be analytic in D_{1} and continuous in $D_{1} \cup \Gamma$
- $g(z)$ be analytic in D_{2} and continuous in $D_{2} \cup \Gamma$
- $f(z)=g(z)$ for $z \in \Gamma$

Show that the function

$$
H(z)=\left\{\begin{array}{cc}
f(z) & z \in D_{1} \\
f(z)=g(z) & z \in \Gamma \\
g(z) & z \in D_{2}
\end{array}\right.
$$

is analytic in $D=D_{1} \cup \Gamma \cup D_{2}$.
[Hint: Use the Morera theorem.]
3. (a) Show that any analytic function (not identically equal to zero) can have only isolated zeros inside its analyticity domain.
(b) Can an analytic function have a non-isolated singularuty?
(c) Prove the Uniqueness Theorem: If two functions are analytic in a domain D and equal on some set of points that has a limiting point inside D, then these functions are identically equal in D.
4. Evaluate
(a) $\int_{-\infty}^{\infty} e^{i x^{2}} d x$
(b) $\int_{0}^{\infty} \frac{\sin x}{x} d x$.
5. Find the leading behavior, as $s \rightarrow+\infty$, of the integral
(a) $I(s)=\int_{0}^{3} \frac{1}{\sqrt{x^{2}+2 x}} e^{-s x} d x$
(b) $I(s)=\int_{0}^{\pi / 2} e^{i s \cos x} d x$

