PhD Preliminary Qualifying Examination

Applied Mathematics

January 7 2015

Instructions: Answer three questions from Part A and three questions from Part B. Indicate clearly which questions you wish to have graded.

Part A.

- 1. Let M be a subset of a Hilbert space H. The goal of this problem is to show that: $\overline{\text{span } M} = H$ if and only if $M^{\perp} = \{0\}.$
 - (a) Assume $\overline{\operatorname{span} M} = H$ and let $x \in M^{\perp}$. Show that x = 0.
 - (b) Assume $M^{\perp} = \{0\}$. Show that $\overline{\operatorname{span} M} = H$.
- 2. Let (x_n) be a sequence in a Hilbert space H. Show that: $x_n \to x$ strongly if and only if $(x_n \to x \text{ weakly and } ||x_n|| \to ||x||)$.
- 3. Let u, v be non-zero elements of a Hilbert space H. Consider the linear operator $T : H \to H$ defined for $x \in H$ by $Tx = u \langle x, v \rangle$.
 - (a) Briefly explain why the operator T is compact.
 - (b) Find a condition on u and v that guarantees that the equation

$$(I-T)x = y$$

admits a unique solution x for all $y \in H$.

4. Let $(\lambda_n) \in \ell^2$ and consider the operator $T : \ell^2 \to \ell^2$ defined by y = Tx, where $x = (\xi_j) \in \ell^2$, $y = (\eta_j) \in \ell^2$ and

$$\eta_j = \sum_{k=1}^{\infty} \alpha_{jk} \xi_k, \ j = 1, 2, \dots,$$

where the α_{jk} satisfy

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |\alpha_{jk}|^2 < \infty.$$

Show that T is a compact operator. Hint: Approximate T with finite rank operators T_n .

- 5. Let $T : X \to X$ be a bounded linear operator defined on a Banach space X. Denote by R_{λ} the resolvent operator associated with T for some $\lambda \in \rho(T)$. The resolvent set of T is denoted by $\rho(T)$.
 - (a) Use Neumann series to show that for $\lambda, \mu \in \rho(T)$,

$$R_{\lambda} = \sum_{j=0}^{\infty} (\lambda - \mu)^j R_{\mu}^{j+1}$$

where the series is absolutely convergent in the operator norm when

$$|\lambda - \mu| < ||R_{\mu}||^{-1}$$

(b) Deduce from part (a) whether the spectrum $\sigma(T)$ is open, closed or neither.

Part B.

1. Find the radius of convergence of the Taylor series with the center at the origin $(x_0 = 0)$ for the following function

(a)
$$f(x) = \frac{\sqrt{x+3}}{x^2+3}$$

(b) $f(x) = \frac{1}{(\cos x+3)^2}$

(x is a real variable; you do not need to find the series themselves).

- 2. Let D_1 and D_2 be two disjoint domains, whose boundaries share a common curve Γ . Let
 - f(z) be analytic in D_1 and continuous in $D_1 \cup \Gamma$
 - g(z) be analytic in D_2 and continuous in $D_2 \cup \Gamma$
 - f(z) = g(z) for $z \in \Gamma$

Show that the function

$$H(z) = \begin{cases} f(z) & z \in D_1 \\ f(z) = g(z) & z \in \Gamma \\ g(z) & z \in D_2 \end{cases}$$

is analytic in $D = D_1 \cup \Gamma \cup D_2$.

[Hint: Use the Morera theorem.]

- 3. (a) Show that any analytic function (not identically equal to zero) can have only isolated zeros inside its analyticity domain.
 - (b) Can an analytic function have a non-isolated singularuty?
 - (c) Prove the Uniqueness Theorem: If two functions are analytic in a domain D and equal on some set of points that has a limiting point inside D, then these functions are identically equal in D.
- 4. Evaluate
 - (a) $\int_{-\infty}^{\infty} e^{ix^2} dx$ (b) $\int_{0}^{\infty} \frac{\sin x}{x} dx$.
- 5. Find the leading behavior, as $s \to +\infty$, of the integral

(a)
$$I(s) = \int_0^3 \frac{1}{\sqrt{x^2 + 2x}} e^{-sx} dx$$

(b) $I(s) = \int_0^{\pi/2} e^{is\cos x} dx$