PhD Preliminary Qualifying Examination: Applied Mathematics

Jan. 3, 2013
Instructions: Answer three questions from part A and three questions from part B. Indicate clearly which questions you wish to have graded.

Part A.

1. The n data points $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$ are believed to lie on an exponential curve $y_{i}=$ $A \exp \left(\lambda x_{i}\right)$. Estimate λ.
2. (a) Specify the weak formulation for the differential equation

$$
u^{\prime \prime}+\lambda \delta\left(x-\frac{1}{2}\right) u=f(x)
$$

subject to boundary conditions $u(0)=u(1)=0$.
(b) Find all values of λ for which this differential equation with $f(x)=0$ has a nontrivial solution and verify that the corresponding solution is a weak solution.
(c) Suppose λ is such that this differential equation with $f(x)=0$ has only the trivial solution. Find the solution with $f(x)=1$.
3. (a) Find all conditions on α, β, γ, and $f(x)$ for which solutions of

$$
\begin{equation*}
u^{\prime \prime}+\alpha^{2} u=f(x), \quad u(0)=\beta, \quad \alpha u^{\prime}(0)-u^{\prime}(1)=\gamma \tag{1}
\end{equation*}
$$

exist.
(b) Find an integral representation for the solution in the case that $\alpha=0$.
4. Consider the integral equation

$$
\phi(x)-\lambda \int_{0}^{\pi} \sin (x+t) \phi(t) d t=\cos (x)+\sin (x), \quad 0 \leq x \leq \pi
$$

(a) Find the unique solution when $\lambda \neq \pm 2 / \pi$. Why is a unique solution guaranteed to exist?
(b) Show that there is no solution when $\lambda=2 / \pi$.
(c) Show that when $\lambda=-2 / \pi$ there is a one-parameter family of solutions of the form

$$
\phi(x)=f_{p}(x)+\alpha f_{h}(x) .
$$

Determine $f_{h}(x)$.
5. (a) Describe the Gram-Schmidt orthogonalization procedure for a set of n-vectors $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$.
(b) Suppose $k<n$ and that the vectors $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ are linearly independent. Show that the Gram-Schmidt procedure is equivalent to factoring the matrix U with column vectors $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ as $U=Q R$ where R is triangular. What is the structure of Q ?
(c) Use this factorization of U to find the least-squares solution of $U x=b$.

Part B.

1. (a) Formulate and derive the argument principle [which determines the difference between the number of zeros $\left(N_{0}\right)$ and poles $\left(N_{\infty}\right)$ of an analytic function $f(z)$].
(b) Applying this principle, determine the number of zeros located inside the first quadrant $\{z=x+i y: x>0, y>0\}$ of the function $f(z)=z^{5}+1$.
2. Find the image of the half-strip $\{z=x+i y: \quad x>0,0<y<1\}$ under the mapping $w=1 / z$.
3. Calculate the integral

$$
I=\int_{0}^{\infty} \frac{x^{\alpha}}{1+x} d x
$$

where α is a real number for which the integral converges.
4. Formulate and derive the uncertainty principle. Is its inequality optimal?
5. Find at least three terms of the asymptotic expansion of the integral

$$
I(s)=\int_{0}^{1} \ln t e^{i s t} d t, \quad s \text { is real and } s \rightarrow+\infty
$$

