PhD Preliminary Qualifying Examination: Applied Mathematics

Jan. 7, 2010
Instructions: Answer three questions from part A and three questions from part B. Indicate clearly which questions you wish to have graded.

Part A.

1. Let

$$
A=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

(a) Find the eigenvalues and eigenvectors of A, and the range of the function

$$
\phi(x)=\frac{\langle A x, x\rangle}{\langle x, x\rangle}
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right)$ is a real-valued vector.
(b) Compute $\exp (A)$.
(c) Consider the equation

$$
A x=\mu x
$$

Find all solutions for $\mu=1$ and for $\mu=3$.
2. Consider linear operator

$$
H=-\frac{d^{2}}{d x^{2}},
$$

acting on $\psi(x) \in L^{2}[0, \pi]$ with periodic boundary conditions $\psi(0)=\psi(\pi)=0$. Find the eigenvalues and eigenfunctions of H. Show that the eigenvectors of H corresponding to distinct eigenvalues are orthogonal. Are the eigenvectors of H complete, and if so, in what sense?
(b) Solve the equation

$$
H \psi(x)=x^{2},
$$

representing the solution as an expansion in eigenfunctions of H.
3. Let

$$
f(x)= \begin{cases}\frac{100}{n}, & x \text { rational, } x=\frac{m}{n} \\ -2, & x \text { irrational. }\end{cases}
$$

Does the Riemann integral of $f(x)$ over the interval $[-1,1]$ exist? If so, compute it.
Does the Lebesgue integral of $f(x)$ over the interval $[-1,1]$ exist? If so, compute it.
Why is the Lebesgue integral used in defining the Hilbert space $L^{2}[0,1]$, and not the Riemann integral?
4. Let

$$
f(x)=\operatorname{signum}(x)=\left\{\begin{aligned}
1, & x>0 \\
0, & x=0 \\
-1, & x<0
\end{aligned}\right.
$$

(a) Find its first and second derivatives using the theory of distributions.
(b) Compute

$$
\begin{aligned}
I_{0} & =\int_{-1}^{\infty} \log (x+10) f(x) d x \\
I_{1} & =\int_{-1}^{\infty} \log (x+10) f^{\prime}(x) d x \\
I_{2} & =\int_{-1}^{\infty} \log (x+10) f^{\prime \prime}(x) d x
\end{aligned}
$$

5. Using Green's functions, solve the problem

$$
\frac{d^{2} u}{d x^{2}}=\frac{1}{1+x^{2}}, \quad u(-1)=u(1)=0
$$

for $u(x), x \in[-1,1]$ (obtain an integral representation for the solution, but do not evaluate the integral).

Part B.

1. Find a solution $u(x, y)$ of Laplace's equation on the domain $-\infty<x<\infty, 0<y<\infty$ for which $u(x, 0)=x^{1 / 2}$ for $0<x<\infty$. What is $u(x, 0)$ for $-\infty<x<0$?
2. Use Jordan's Lemma (and describe how Jordan's Lemma is used) to evaluate the integral

$$
I=\int_{0}^{\infty} \frac{\cos a x}{x^{2}+1} d x
$$

3. Use Fourier transforms to solve the integral equation

$$
\int_{-\infty}^{\infty} k(x-y) u(y) d y-u(x)=f(x)
$$

with $k(x)=H(x)$, the Heaviside function.
4. Use the z-transform to solve the system of equations

$$
\frac{d u_{n}}{d t}=\frac{1}{h^{2}}\left(u_{n+1}-2 u_{n}+u_{n-1}\right), \quad-\infty<n<\infty
$$

with $u_{n}(t=0)=\sin \frac{2 \pi n}{k}$, with k an integer.
5. Find the leading order term of the asymptotic expansion of the integral

$$
I(s)=\int_{-\infty}^{\infty} e^{i s\left(t+\frac{t^{3}}{3}\right)} d t, \quad s \text { is real and } s \rightarrow+\infty
$$

as well as a rigorous estimate of the error.

