# PhD Preliminary Qualifying Examination: Applied Mathematics 

January, 2009
Instructions: Answer three questions from part A and three questions from part B. Indicate clearly which questions you wish to have graded.

## Part A.

1. (a) The least squares psuedo-inverse of $A$ is a matrix $B$ which satisfies what two properties?
(b) Find the pseudoinverse of the matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right)
$$

2. The Haar function $\phi(x)$ is defined by

$$
\begin{aligned}
\phi(x) & =1 \text { when } 0<x<1 \\
& =0 \text { elsewhere }
\end{aligned}
$$

and the mother Haar wavelet $W(x)$ is defined by

$$
\begin{aligned}
W(x) & =1 \text { when } 0<x<1 / 2 \\
& =-1 \text { when } 1 / 2<x<1 \\
& =0 \text { elsewhere. }
\end{aligned}
$$

Express the function

$$
\begin{aligned}
f(x) & =2 \text { when } 0<x<1 / 4 \\
& =0 \text { when } 1 / 4<x<1 / 2 \\
& =-1 \text { when } 1 / 2<x<3 / 4 \\
& =1 \text { when } 3 / 4<x<1 \\
& =0 \text { elsewhere }
\end{aligned}
$$

as a linear combination of 4 orthogonal functions: the Haar function and 3 Haar wavelets $W_{m n}(x)=2^{m / 2} W\left(2^{m} x-n\right)$, where $m$ and $n$ are appropriate integers.
3. (a) Define what is meant by a precompact (or sequentially compact) set and what is meant by a compact linear operator, assuming linear operators and bounded sets have been already been defined.
(b) If $K$ is a compact linear operator and if $\left\{\phi_{n}\right\}$ is an infinite set of orthonormal functions then (using Bessel's inequality, if needed) show that

$$
\lim _{n \rightarrow \infty} K \phi_{n}=0
$$

4. For the differential operator $L u=u^{\prime \prime}+\left(x^{2}-1\right) u^{\prime}$ on the interval [0,1] with boundary conditions $u(0)=u^{\prime}(1)$ and $u(1)=u^{\prime}(0)$ find the adjoint operator and its domain.
5. (a) Write down the set of linear equations which if solved give the Green's function for the operator $L u=d^{3} u / d x^{3}$ on the interval $[0,1]$ with boundary conditions $u(0)=u^{\prime}(0)=$ $u(1)=0$. (There is no need to explicitly solve these equations).
(b)Letting $G(x, y)$ denote the Green's function which solves (a), and using a particular solution of $d^{3} u / d x^{3}=0$, find the general solution to $d^{3} u / d x^{3}=f(x)$ on the interval $[0,1]$ with boundary conditions $u(0)=u^{\prime}(0)=0$ and $u(1)=1$.

## Part B.

1. (a) Verify that the real and imaginery parts of a complex analytic function satisfy Laplace's equation.
(b) Give an interpretation of the complex function $w(z)=z+\frac{a^{2}}{z}$ as a flow past some object. That is, determine the streamlines for this function. Where are the stagnation points?
2. (a) Use contour integration to explicitly evaluate $f(a)=\int_{0}^{\infty} \frac{x \sin x d x}{x^{2}-a}$ for complex $a$. For what values of complex $a$ is this possible?
(b) Is the function $f(a)$ an analytic function of $a$ ? Identify all singularities, branch points, branch cuts, etc.
3. The windowed Fourier transform of a function $f(x) \in L^{2}(-\infty, \infty)$ is defined by

$$
G f(\omega, \mu)=\int_{-\infty}^{\infty} g(x-\mu) f(x) e^{-\omega x} d \mu d x .
$$

Suppose $g(x)$ is a real valued function. State and verify the formula for the reconstruction of $f(x)$ from $G f$, including any additional conditions on $g(x)$. You may assume the validity of the Fourier transform.
4. (a) Find the spherically symmetric eigenfunctions and corresponding eigenvalues for the Laplacian on a spherical domain of radius $R$ with Dirichlet boundary conditions $u(R)=0$.
(b) Use these eigenfunctions to solve the heat equation on a spherical domain of radius $R$, with $u(R, t)=U_{0}$ and $u(r, 0)=0$.
(c) Estimate the time $t$ at which $u(0, t)$ is $\frac{U_{0}}{2}$. How does this time depend on the radius $R$ ?
5. (a) Find the first term of the asymptotic representation of

$$
n!=\int_{0}^{\infty} \exp (-t) t^{a-1} d t
$$

for large $n$. (This approximation is called Stirling's formula.)
(b) What is the order of the error term and how can this be rigorously justified? (Invoke the appropriate theorem.)

