PhD Preliminary Qualifying Examination Applied Mathematics

Aug 19 2014

Instructions: Answer three questions from Part A and three questions from Part B. Indicate clearly which questions you wish to have graded.

Part A.

- 1. Let $T: L^1[0,1] \to L^2[0,1]$ be a bounded linear operator. Let $a \in L^{\infty}[0,1]$ and $g \in L^1[0,1]$.
 - (a) Prove that there exists a constant C > 0 such that if $||a||_{L^{\infty}} < C$ then the equation

$$f + a(Tf)^2 = g \tag{1}$$

has a unique solution f in the set

$$B = \{ u \in L^1[0,1] : \|u - g\|_{L^1} \le 1 \}.$$

Note: the constant C may depend on T and/or g.

- (b) Suggest an iterative procedure for approximating the unique solution f to equation (1).
- 2. Let X be a separable Hilbert space and (e_n) be a total orthonormal sequence of X. Let $T: X \to X$ be a bounded linear operator satisfying

$$\sum_{n=1}^{\infty} \|Te_n\|^2 < \infty.$$
⁽²⁾

Define the operators $T_k: X \to X, k = 1, 2, \dots$, that applied to an arbitrary

$$x = \sum_{n=1}^{\infty} x_n e_n \in X$$
 give $T_k x = \sum_{n=1}^k x_n T e_n$.

- (a) Are the operators T_k compact? Explain why or why not.
- (b) Using equation (2), show that the sequence (T_k) converges uniformly to T, i.e. show that $||T T_k|| \to 0$ as $k \to \infty$.
- (c) Is T compact? Explain why or why not.
- 3. Assume a compact self-adjoint operator $T: X \to X$, where X is a separable Hilbert space, satisfies $\langle Tx, x \rangle \geq 0$ for all $x \in X$.
 - (a) State the spectral theorem for compact self-adjoint operators.
 - (b) Show that all the eigenvalues of T are non-negative.
 - (c) Construct an operator $S: X \to X$ such that $T = S^2$.

- 4. Let $l^{1'}$ be the dual space of l^1 . The objective here is to show that $l^{1'}$ is isomorphic to l^{∞} . You may use that a Schauder basis for l^1 (and l^{∞}) is (e_k) , where $e_k = (\delta_{kj})$, i.e. the sequence with zeroes everywhere except for a 1 in the k-th position.
 - (a) Show that any $f \in l^{1'}$ corresponds to a sequence $g = (\gamma_k) \in l^{\infty}$.
 - (b) Show that any sequence $g = (\gamma_k) \in l^{\infty}$ corresponds to some $f \in l^{1'}$.
 - (c) Parts (a) and (b) define a bijective linear mapping $G : l^{1'} \to l^{\infty}$. Prove that G is an isomorphism by showing $||f||_{l^{1'}} = ||G(f)||_{l^{\infty}}$ for any $f \in l^{1'}$.
- 5. Let $K: L^2[0,1] \to L^2[0,1]$ be the linear operator defined by

$$(Kx)(t) = \int_0^1 k(t,\tau)x(\tau)d\tau$$

where $k : [0, 1] \times [0, 1] \to \mathbb{R}$ is continuous.

- (a) Show that K is bounded and give an upper bound for ||K|| (in terms of k).
- (b) Show that there is a constant C such that if $|\mu| < C$, the operator $I + \mu K$ is invertible.
- (c) Assuming $|\mu| < C$, where C is as in part (b), express $(I + \mu K)^{-1}$ as a series. Specify whether the series converges and in what sense.

Part B.

- 1. Find the radius of convergence of the Taylor series with the center at $x_0 = 1$ for the following function
 - (a)

$$f(x) = x^{1/3}$$

(b)

$$f(z) = \frac{(\sin x + 2)^2}{(\sin x - 2)^2}$$

(x is a real variable; you do not need to find the series themselves).

- 2. (a) Show that any analytic function (not identically equal to zero) can have only isolated zeros inside its analyticity domain.
 - (b) Prove the Uniqueness Theorem: If two functions are analytic in a domain D and equal on some set of points that has a limiting point inside D, then these functions are identically equal in D.
- 3. Evaluate the integrals:

(a)
$$I = \int_0^\infty \frac{\sin x}{x} dx,$$

(b)
$$I = \int_0^\infty \frac{x^\alpha}{2+x} dx \qquad (-1 < \alpha < 0).$$

- 4. (a) Calculate the Fourier transform of a Gaussian $f(x) = e^{-x^2}$.
 - (b) Formulate and prove Heisenberg's uncertainty principle.
- 5. Consider integral

$$I(s) = \int_C \frac{e^{s(z^2 - 1)}}{z - 1} \, dz$$

with large parameter $s \to +\infty$; C is the vertical line Im z = 3, from $z = 3 - i\infty$ to $z = 3 + i\infty$.

- (a) What is the saddle point z_0 ? What is the path C_0 of steepest descent from z_0 ? What is the path of steepest ascent from z_0 ?
- (b) Find the three-term asymptotic expansion of the integral.