PhD Preliminary Qualifying Examination Applied Mathematics

August, 2013

Instructions: Answer three questions from part A and three questions from part B. Indicate clearly which questions you wish to have graded.

Part A.

- 1. Suppose that E is a bounded linear operator on a Hilbert space H, with operator norm ||E|| = r < 1. Show that the operator I E, where I is the identity, is bounded and invertible. Give an estimate for $||(I E)^{-1}||$, and a convergent series representation for $(I E)^{-1}$.
- 2. Suppose that the square real matrix $A = (a_{ij})$ satisfies $a_{ij} = a_{ji}$ for all i, j.
 - (a) Show that every eigenvalue λ of A must be real.
 - (b) Show that for any eigenpairs (λ_1, u_1) , (λ_2, u_2) , with $\lambda_1 \neq \lambda_2$, the eigenvectors u_1 and u_2 must be orthogonal.
 - (c) Let $c = \min_{\|u\|=1} u^T A u$. Prove that if c > 0, then A^{-1} exists. In this case, find an estimate for the matrix operator norm $\|A^{-1}\|$.
- 3. Consider the problem Lu = 1 on $(0, \pi)$, where Lu = u'' + u with boundary conditions $u'(0) = u'(\pi) = 0$.
 - (a) Write down the weak formulation of the problem.
 - (b) Find the $L^2[0, \pi]$ adjoint of L, and determine whether or not L is self-adjoint.
 - (c) Find the nullspace of L. Use Fredholm theory to characterize the set of functions f such that Lu = f has a solution. Verify that f = 1 satisfies your condition, and find an infinite set of solutions to the problem Lu = 1.

- 4. Define the operator K on $L^2[0,1]$ by $Ku(x) = \int_0^1 k(x,y)u(y) dy$, for $x \in [0,1]$, where k(x,y) is a real-valued, bounded, continuous function, with k(x,y) > 0.
 - (a) Find the L^2 adjoint K^* for K, and find a condition on k which guarantees that K is self-adjoint.
 - (b) Describe the properties of the set

$$\{\lambda \in \mathbb{C} : (K - \lambda I)u = 0 \text{ for some } u \neq 0\}$$

(cardinality, bounds, etc..).

- (c) Consider the problem Ku = f. Let X be the set of all $f \in L^2[0,1]$ such that a unique solution $u = K^{-1}f$ exists. Can we be assured that there is a constant C such that $||K^{-1}f|| \leq C||f||$, for all $f \in X$? Why or why not?
- 5. Let f(x) = |x| 1 on the interval [-1, 1].

(a) Treating
$$f$$
 as a distribution, calculate

$$\int_{-1}^{1} f'(x)f'(x) dx \text{ and } \int_{-1}^{1} f(x)f''(x) dx.$$

- (b) Explain why $\int_{-1}^{1} f'(x) f''(x) dx$ and $\int_{-1}^{1} f(x) f'''(x) dx$ do not make sense.
- (c) In general, what property is required of g(x) so that $\int_{-1}^{1} g(x) f^{(n)}(x) dx$ is well-defined for a given n^{th} derivative?

Part B.

1. Find the radius of convergence of the Taylor series for the function

$$\frac{1}{2 + \cos x} \qquad (x \text{ is a real variable})$$

around the origin $(x_0 = 0)$. {You do not need to find the Taylor series itself.}

- 2. (a) Show that any bilinear map takes circles into circles.
 - (b) Find the image of the triangle

$$\{z = x + iy: x \ge 0, y \ge 0, x + y \le 1\}$$

under the mapping w = 1/z.

- 3. Evaluate the integrals:
 - (a) $I = \int_0^\infty \frac{\sin x}{x} dx$, (b) $I = \int_0^\infty \frac{x^\alpha}{2+x} dx$ $(-1 < \alpha < 1)$.
- 4. Formulate and derive the *uncertainty principle*. Is its inequality optimal? Explain.
- 5. Find the leading behavior, as $s \to +\infty$, of the integral

(a)
$$I = \int_0^3 \frac{1}{\sqrt{x^2 + 2x}} e^{-sx} dx$$
,
(b) $I = \int_0^{\pi/2} e^{is\cos x} dx$.