PhD Preliminary Qualifying Examination: Applied Mathematics

August, 2010
Instructions: Answer three questions from part A and three questions from part B. Indicate clearly which questions you wish to have graded.

Part A.

1. (a) State and prove the Fredholm Alternative Theorem for a linear transformation A : $R^{n} \rightarrow R^{m}$.
(b) Find and give a graphical interpretation of the pseudo-inverse of the matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right)
$$

2. This problem examines features of the differential operator

$$
L u=u^{\prime \prime}
$$

subject to boundary conditions $u(-1)+u(1)=0$ and $u^{\prime}(-1)=u^{\prime}(1)$.
(a) What is the adjoint of this operator? Is it self-adjoint?
(b) What is the nullspace of the operator and what is the nullspace of the adjoint operator?
(c) Under what conditions on f, a, and b does the boundary value problem

$$
u^{\prime \prime}=f, \quad u(-1)+u(1)=a, \quad u^{\prime}(-1)-u^{\prime}(1)=b
$$

have a solution?
(d) Find the smallest least squares solution for the boundary value problem

$$
u^{\prime \prime}=1, \quad u(-1)+u(1)=1, \quad u^{\prime}(-1)-u^{\prime}(1)=1 .
$$

What equation does this least squares solution satisfy?
3. (a) Find all the eigenvalues and eigenfunctions for the operator

$$
(L u)(x)=\int_{0}^{1} x y u(y) d y
$$

(b) Do these eigenfunctions form a complete set? If so, how do you know (state a relevant theorem) and on what Hilbert space, and if not, why not?
4. (a) Find the weak formulation for the boundary value problem

$$
u^{\prime \prime}-\delta(x) u=1
$$

subject to boundary conditions $u(-1)=u(1)=0$.
(b) Find the solution to this boundary value problem.
5. Let $P_{n}(x), n=0,1, \cdots$, be the Legendre polynomials, $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$, which are also eigenfunctions for the linear differential operator $L u=-\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d u}{d x}\right)$ on the interval $-1 \leq x \leq 1$.
(a) Determine the eigenvalue associated with P_{n}
(b) Show that the Legendre polynomials are orthogonal.
(c) Suppose $f(x)$ is square integrable on the interval $-1<x<1$. Use that the Legendre polynomials are orthogonal to prove that

$$
g(x)=\sum_{n=0}^{\infty} \alpha_{n} P_{n}(x)
$$

where $\alpha_{n}=\frac{\int_{-1}^{1} f(x) P_{n}(x) d x}{\int_{-1}^{1} P_{n}^{2}(x) d x}$, is also square integrable.

Part B.

1. For a function $f(z)$ which is analytic within a simple, nonintersecting, closed curve C a corollary of the Cauchy integral formula implies that for any point z inside C,

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(\xi)}{(\xi-z)^{2}} d \xi .
$$

Use this to prove Liouville's theorem that any function which is bounded and analytic in the entire complex plane must be a constant, and hence prove the fundamental theorem of algebra that an $n t h$ order polynomial $P_{n}(z)$ has n roots (counting multiplicity) in the complex plane.
2. The fourth quadrant $x \geq 0, y \leq 0$ is occupied by an impermeable solid, around which air flows. Treating the flow as incompressible and irrotational use conformal mapping to map to a simpler problem and give one non-trivial solution for the complex potential $f(z)$ in the original coordinates. Find the equation in polar coordinates for the streamline passing through $z=-1$. What happens to the fluid velocity as one approaches the corner?
3. Use antiderivatives to evaluate the contour integral

$$
I=\int_{C} \frac{1}{z+i}
$$

where C is a contour (possibly with loops) starting at $z=0$ and ending at $z=1$. Express your answer in the form $I=a+i b$ where a and b are real. The answer is multivalued. Explain the interpretation of the different values, and account for the difference between successive values using the residue theorem.
4. The operator $L u=-u^{\prime \prime}$ on $L^{2}(-\infty, \infty)$ has a Green's function defined by $-G^{\prime \prime}-\lambda G=$ $\delta(x-\xi)$ given by

$$
G(x, \xi ; \lambda)=-\frac{e^{i \sqrt{\lambda}|x-\xi|}}{2 i \sqrt{\lambda}}
$$

Assume the representation

$$
-\frac{1}{2 \pi i} \int_{C_{\infty}} G(x, \xi ; \lambda) d \lambda=\delta(x-\xi)
$$

and show how it leads to the Fourier Transform Theorem that

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i \mu x} F(\mu) d \mu, \quad F(\mu)=\int_{-\infty}^{\infty} e^{i \mu x} f(x) d x
$$

5. Use the method of steepest descent to estimate the integral

$$
I(s)=\int_{0}^{1} e^{s\left(-z^{3}+i z^{3}\right)} d z
$$

for large positive real values of s.

