PhD Preliminary Qualifying Examination: Applied Mathematics

August 18, 2009

INSTRUCTIONS: Answer three questions from Part A and three questions

 from Part B. Indicate clearly which questions you wish to have graded.
Part A.

1. (a) Let $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$. Find the maximum value of the quadratic form $\langle A x, x\rangle$ for $\|x\| \leq 1$. (b) Prove that eigenvectors corresponding to distinct eigenvalues of a self-adjoint matrix are orthogonal. (c) Let $H=-\frac{d^{2}}{d x^{2}}$ on $L^{2}[0,1]$ with boundary conditions $\psi(0)=\psi(1)=0$. Find the eigenvalues and eigenvectors of H. Show that the eigenvectors of H corresponding to distinct eigenvalues are orthogonal.
2. (a) Define Cauchy sequence, and what it means for a linear space to be complete. (b) Let $\mathcal{C}[0,1]$ be the set of real-valued functions which are continuous on $[0,1]$. Show that $\mathcal{C}[0,1]$ is complete under under the uniform norm $\|f\|=\sup _{x \in[0,1]}|f(x)|$. (c) Let $f_{n}(x)=x^{n}$ for $x \in[0,1]$. Find $f=\lim _{n \rightarrow \infty} f_{n}$. Is $f(x)$ continuous? Does this violate the completeness you showed in (a)? Explain.
3. State and prove the Riesz Representation Theorem for a Hilbert space.
4. Let $T: \ell^{2} \longrightarrow \ell^{2}$ be defined by $y=T x$ with $y_{j}=x_{j} e^{-j}$ for $j=1,2,3, \ldots$, where $x=\left(x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{1}, y_{2}, \ldots\right)$. Prove that T is a compact operator on ℓ^{2}.
5. (a) Let $f(x)=|x|$. Find its first and second derivatives using operational calculus, that is, the theory of distributions. (b) Using Green's functions, find the solution to

$$
\frac{d^{2} u}{d x^{2}}=f(x), \quad u(0)=u(1)=0
$$

Use the reproducing property of the delta distribution to formally verify that your solution satisfies the equation.

Part B.

1. Formulate and prove the Maximum Modulus Theorem.
2. Suppose $f(z)$ is analytic in some neighborhood of the point z_{0} without the point z_{0} itself; let z_{0} be an essential singularity of $f(z)$.

Show that for any complex number C, there is a sequence of points $z_{n} \quad(n=0,1,2, \ldots)$ such that

$$
z_{n} \rightarrow z_{0} \quad \text { and } \quad f\left(z_{n}\right) \rightarrow C .
$$

(In other words, in every neighborhood of an essential singularity, the function $f(z)$ is arbitrary close to every complex number.)
3. Evaluate the integral

$$
I=\int_{-\infty}^{+\infty} e^{i a x^{2}} d x
$$

(a is a positive parameter).
4. Evaluate the integral

$$
I=\int_{0}^{\infty} \frac{x^{\alpha} d x}{\left(x^{2}+1\right)}
$$

(where α is a parameter, such that the integral converges).
5. Obtain the first two terms of the asymptotic expansion of

$$
I(k)=\int_{0}^{5} \frac{e^{-k t}}{\sqrt{t^{2}+2 t}} d x, \quad k \text { is real and } k \rightarrow+\infty
$$

