PhD Preliminary Qualifying Examination: Applied Mathematics

August 13, 2007
Instructions: Answer three questions from part A and three questions from part B. Indicate clearly which questions you wish to have graded.

Part A.

1. The dilation equation is

$$
\phi(x)=\sum_{k} c_{k} \phi(2 x-k)
$$

and the associated wavelet is

$$
W(x)=\sum_{k}(-1)^{k} c_{1-k} \phi(2 x-k) .
$$

(a) Show that the function

$$
N_{2}(x)=\left\{\begin{array}{cc}
x & 0<x<1 \\
2-x & 1 \leq x<2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

satisfies the dilation equation and determine the values of c_{k}. Sketch the associated wavelet. Briefly explain whether or not $N_{2}(x)$ can act as a scaling function for a multiresolution analysis?
(b) Prove that if the functions $\{\phi(x-k)\}_{k}$ form an orthonormal set then

$$
\int_{-\infty}^{\infty} W(x) W(x-m) d x=\delta_{0, m} \int_{-\infty}^{\infty} \phi^{2}(x) d x .
$$

(c) Prove that

$$
\int_{-\infty}^{\infty} W(x) \phi(x-m) d x=0
$$

for all m.
2. (a) Show that a test function $\psi(x)$ is of the form $\psi=(x \phi)^{\prime}$ where ϕ is a test function if and only if

$$
\int_{-\infty}^{\infty} \psi(x) d x=0 \text { and } \int_{0}^{\infty} \psi(x) d x=0
$$

(b) Solve the following equation in the sense of distribution:

$$
x^{2} \frac{d \phi}{d x}=0 .
$$

3. Consider the integral equation

$$
\phi(x)-\lambda \int_{0}^{\pi} \sin (x+t) \phi(t) d t=\cos (x)+\sin (x), \quad 0 \leq x \leq \pi .
$$

(a) Find the unique solution when $\lambda \neq \pm 2 / \pi$.
(b) Use the Fredholm alternative theorem to show that there is no solution when $\lambda=2 / \pi$.
(c) Use the Fredholm alternative theorem to show that when $\lambda=-2 / \pi$ there is a oneparameter family of solutions of the form

$$
\phi(x)=\frac{\cos (x)+\sin (x)}{2}+\alpha(\cos (x)-\sin (x)) .
$$

4. Suppose that L is a bounded linear operator in a Hilbert space H with closed range.
(a) Prove the Fredholm alternative theorem for solutions of the inhomogeneous equation $L u=f$ with $u, f \in H$.
(b) Suppose that L is invertible and has a complete orthonormal set of eigenfunctions ϕ_{n}, integer n. Solve the inhomogeneous equation of part (a) using an eigenfunction expansion.
(c) Suppose that the adjoint operator L^{*} has a nontrivial nullspace $\mathcal{N}\left(L^{*}\right)$ spanned by the functions $\psi_{i}, i=1, \ldots m$ and f does not lie in the orthogonal complement of $\mathcal{N}\left(L^{*}\right)$. Let L have a nullspace spanned by the functions $\phi_{i}, i=1, \ldots, m$. Explain the construction of the smallest least squares solution.
5. (a) By constructing the one-dimensional Green's function solve the inhomogeneous equation

$$
\frac{d^{2} u}{d x^{2}}=f(x), \quad u(0)=\alpha, \quad u(1)=\beta
$$

(b) Use Green's functions to solve

$$
\frac{d^{2} u}{d x^{2}}-\alpha^{2} u=f(x) \quad \text { on } L^{2}(-\infty, \infty)
$$

with α real.

Part B.

1. Formulate and prove the Cauchy integral formula.
2. Solve Laplace's equation $\Delta \phi=0$ in the domain between the two nonconcentric circles $|z|=1$ and $|z-1|=5 / 2$, subject to the boundary conditions $\phi=a$ on $|z|=1$ and $\phi=b$ on $|z-1|=5 / 2$.
3. Evaluate the integral

$$
I=\int_{0}^{\infty} \frac{x^{\alpha} d x}{(x+1)^{2}}
$$

(where α is a constant parameter, so that the integral converges).
4. Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\sin \alpha x}{x} d x
$$

(α is a constant parameter). Explain your steps.
5. Find the two-term asymptotic expansion of the integral

$$
I(s)=\int_{-\infty}^{\infty} \frac{e^{s(i x+1)^{2}}}{(x+i)^{2}} d x, \quad s \text { is real and } s \rightarrow+\infty
$$

