PhD Preliminary Qualifying Examination

Applied Mathematics

Tuesday, August 16, 2016

Instructions: Answer three questions from Part A and three questions from Part B. Indicate clearly which questions you wish to have graded.

Part A.

1. Consider the operator $T: \ell^2 \to \ell^2$ defined for $x = (\xi_i) \in \ell^2$ by

$$Tx = (0, \xi_1 \alpha_1, \xi_2 \alpha_2, \ldots),$$

for some sequence (α_j) with $\alpha_j \to 0$. Show that T is compact.

2. Let X be a Banach space and consider the *non-linear* mapping $F: X \to X$ defined by

$$F(x) = y - \alpha ||x||x,$$

where $y \in X$ is fixed and α is a scalar. Show that there is a constant C > 0 such that for any $|\alpha| < C$, F is a contraction on the open ball of radius 1 centered at y.

3. Let M be a subset of a Hilbert space H. Assume M is such that for any $v, w \in H$ for which the equality

$$\langle v, x \rangle = \langle w, x \rangle$$

holds for all $x \in M$, we must have v = w. Show that $M^{\perp} = \{0\}$.

- 4. Let X be a real Banach space. Assume $f \in X^*$ has a closed nullspace $\mathcal{N}(f)$. The goal of this problem is to show that f must be a bounded linear functional.
 - (a) Let $x_0 \in X$ be such that $f(x_0) = 1$. Explain why there is an $\epsilon > 0$ for which the ball

$$B(x_0,\epsilon) \equiv \{x \in X \mid |x - x_0| < \epsilon\}$$

satisfies $B(x_0, \epsilon) \subset X - \mathcal{N}(f)$.

- (b) Prove that f(x) > 0 for all $x \in B(x_0, \epsilon)$, where ϵ is as in part (a). To prove this, you may assume for contradiction that there is some $y \in B(x_0, \epsilon)$ with f(y) < 0.
- (c) Any $x \in B(x_0, \epsilon)$ can be written as $x = x_0 + \epsilon u$ for some u with ||u|| < 1. Use the result of part (b) to show that $|f(u)| < 1/\epsilon$.
- (d) To conclude, give an upper bound for ||f||.
- 5. Let $T: X \to X$ be a bounded linear operator on a complex Banach space X. Prove that $\sigma(T)$ lies in the complex plane disk: $\{\lambda \in \mathbb{C} \mid |\lambda| \leq ||T||\}$.

Part B.

1. The following function f(x) [x is a real variable] can be represented by a series (Taylor or Laurent) in powers of (x - 7). Find the radius of convergence of the series in each case

(a)
$$f(x) = e^{(x-7)^{10}}$$
,
(b) $f(x) = \left(\frac{\sin x - 3}{\sin x - 2}\right)^2$,
(c) $f(x) = \frac{\sin x - 2}{x^2 - 49}$

[You do not need to find the series themselves.]

- 2. (a) Prove: If a function is analytic then its real and imaginary parts are harmonic.
 - (b) Prove: If a function u(x, y) is harmonic in a domain D, then u(x, y) cannot attain a strict local maximum in D. [Hint: If f(z) = u + iv, then function $\phi(z) = e^{f(z)}$ has absolute value $|\phi(z)| = e^u$.]
- 3. Integrate

(a)
$$\int_{0}^{\infty} \frac{\sin \alpha x}{x} dx,$$

(b)
$$\int_{0}^{\infty} \frac{x^{\alpha}}{1+x} dx,$$

(c)
$$\int_{0}^{\infty} \sin x^{2} dx$$

[Explain the logic (in particular, the choice of contour), but do not worry about getting the exact numbers; α is a real parameter.]

- 4. (a) Consider a 2-dimensional map (x, y) → (u, v).
 Explain: If the map is given by an analytic function [u + iv = f(x + iy)] and at some point z₀ = x₀ + iy₀ the derivative f'(z₀) ≠ 0, then this map preserves small shapes in the vicinity of z₀.
 - (b) Is a square conformally equivalent to a circle?
 - (c) Explain: A map by analytic function preserves Laplace's equation.
- 5. Solve Laplace's equation

$$u_{xx} + u_{yy} = 0$$
 in the domain $D = \{(x, y) \in \mathbb{R}^2 : (x - 1)^2 + y^2 > 1 \& (x - 2)^2 + y^2 < 4\}$

subject to the boundary condition

$$u(x,y) = a$$
 when $(x-1)^2 + y^2 = 1$ and $u(x,y) = b$ when $(x-2)^2 + y^2 = 4$

 $[a \text{ and } b \text{ are real parameters; the two circles touch each other; express your answer in terms of the original real variables <math>x, y$].