PhD Preliminary Qualifying Examination
 Applied Mathematics

Tuesday, August 16, 2016
Instructions: Answer three questions from Part A and three questions from Part B. Indicate clearly which questions you wish to have graded.

Part A.

1. Consider the operator $T: \ell^{2} \rightarrow \ell^{2}$ defined for $x=\left(\xi_{j}\right) \in \ell^{2}$ by

$$
T x=\left(0, \xi_{1} \alpha_{1}, \xi_{2} \alpha_{2}, \ldots\right)
$$

for some sequence $\left(\alpha_{j}\right)$ with $\alpha_{j} \rightarrow 0$. Show that T is compact.
2. Let X be a Banach space and consider the non-linear mapping $F: X \rightarrow X$ defined by

$$
F(x)=y-\alpha\|x\| x,
$$

where $y \in X$ is fixed and α is a scalar. Show that there is a constant $C>0$ such that for any $|\alpha|<C, F$ is a contraction on the open ball of radius 1 centered at y.
3. Let M be a subset of a Hilbert space H. Assume M is such that for any $v, w \in H$ for which the equality

$$
\langle v, x\rangle=\langle w, x\rangle
$$

holds for all $x \in M$, we must have $v=w$. Show that $M^{\perp}=\{0\}$.
4. Let X be a real Banach space. Assume $f \in X^{*}$ has a closed nullspace $\mathcal{N}(f)$. The goal of this problem is to show that f must be a bounded linear functional.
(a) Let $x_{0} \in X$ be such that $f\left(x_{0}\right)=1$. Explain why there is an $\epsilon>0$ for which the ball

$$
B\left(x_{0}, \epsilon\right) \equiv\left\{x \in X\left|\left|x-x_{0}\right|<\epsilon\right\}\right.
$$

satisfies $B\left(x_{0}, \epsilon\right) \subset X-\mathcal{N}(f)$.
(b) Prove that $f(x)>0$ for all $x \in B\left(x_{0}, \epsilon\right)$, where ϵ is as in part (a).

To prove this, you may assume for contradiction that there is some $y \in B\left(x_{0}, \epsilon\right)$ with $f(y)<0$.
(c) Any $x \in B\left(x_{0}, \epsilon\right)$ can be written as $x=x_{0}+\epsilon u$ for some u with $\|u\|<1$.

Use the result of part (b) to show that $|f(u)|<1 / \epsilon$.
(d) To conclude, give an upper bound for $\|f\|$.
5. Let $T: X \rightarrow X$ be a bounded linear operator on a complex Banach space X.

Prove that $\sigma(T)$ lies in the complex plane disk: $\{\lambda \in \mathbb{C}||\lambda| \leq\|T\|\}$.

Part B.

1. The following function $f(x)$ [x is a real variable] can be represented by a series (Taylor or Laurent) in powers of $(x-7)$. Find the radius of convergence of the series in each case
(a) $\quad f(x)=e^{(x-7)^{10}}$,
(b) $\quad f(x)=\left(\frac{\sin x-3}{\sin x-2}\right)^{2}$,
(c) $\quad f(x)=\frac{\sin x-2}{x^{2}-49}$
[You do not need to find the series themselves.]
2. (a) Prove: If a function is analytic then its real and imaginary parts are harmonic.
(b) Prove: If a function $u(x, y)$ is harmonic in a domain D, then $u(x, y)$ cannot attain a strict local maximum in D. [Hint: If $f(z)=u+i v$, then function $\phi(z)=e^{f(z)}$ has absolute value $|\phi(z)|=e^{u}$.]
3. Integrate

$$
\begin{array}{ll}
\text { (a) } & \int_{0}^{\infty} \frac{\sin \alpha x}{x} d x \\
\text { (b) } & \int_{0}^{\infty} \frac{x^{\alpha}}{1+x} d x \\
\text { (c) } & \int_{0}^{\infty} \sin x^{2} d x
\end{array}
$$

[Explain the logic (in particular, the choice of contour), but do not worry about getting the exact numbers; α is a real parameter.]
4. (a) Consider a 2-dimensional map $(x, y) \rightarrow(u, v)$.

Explain: If the map is given by an analytic function $[u+i v=f(x+i y)]$ and at some point $z_{0}=x_{0}+i y_{0}$ the derivative $f^{\prime}\left(z_{0}\right) \neq 0$, then this map preserves small shapes in the vicinity of z_{0}.
(b) Is a square conformally equivalent to a circle?
(c) Explain: A map by analytic function preserves Laplace's equation.
5. Solve Laplace's equation

$$
u_{x x}+u_{y y}=0 \quad \text { in the domain } \quad D=\left\{(x, y) \in \mathbb{R}^{2}: \quad(x-1)^{2}+y^{2}>1 \quad \& \quad(x-2)^{2}+y^{2}<4\right\}
$$

subject to the boundary condition

$$
u(x, y)=a \text { when }(x-1)^{2}+y^{2}=1 \quad \text { and } \quad u(x, y)=b \text { when }(x-2)^{2}+y^{2}=4
$$

[a and b are real parameters; the two circles touch each other; express your answer in terms of the original real variables x, y].

