PhD Preliminary Qualifying Examination

Applied Mathematics

August 17, 2015

Instructions: Answer three questions from Part A and three questions from Part B. Indicate clearly which questions you wish to have graded.

Part A.

1. Assume a bounded, self-adjoint operator $T: H \to H$, where H is a Hilbert space, satisfies

$$|Tx,x\rangle \ge \beta ||x||^2,\tag{1}$$

for some $\beta > 0$. The goal of this problem is to show that T is one-to-one and onto.

- (a) Show that the nullspace of T is trivial, i.e. $\mathcal{N}(T) = \{0\}$.
- (b) Show that the range $\mathcal{R}(T)$ is closed.
- (c) Show that $\mathcal{R}(T)^{\perp} = \{0\}.$
- (d) Why do we have $\mathcal{R}(T) = H$?
- 2. Let X be a Banach space, $f: X \to \mathbb{R}$ be a bounded linear functional, $y \in X$ fixed and $\alpha \in \mathbb{R}$.
 - (a) Prove that there exists a constant C > 0 such that if $|\alpha| < C$, then the non-linear equation

$$x + \alpha f(x)x = y,\tag{2}$$

has a unique solution x in the ball $B = \{x \in X \mid ||x - y|| \le 1\}.$

- (b) Suggest an iterative procedure for approximating the unique solution x to equation (2).
- 3. Let (e_n) be an orthonormal sequence of a Hilbert space H. Show that $e_n \to 0$ weakly.
- 4. Let (λ_j) be a sequence real numbers with $\lambda_j \neq 1$ for all j and $\lambda_j \to 1$. Consider the operator $T : \ell^2 \to \ell^2$ defined for $(\xi_j) \in \ell^2$ by

$$T(\xi_j) = (\lambda_j \xi_j).$$

- (a) Find the spectrum $\sigma(T)$, point spectrum $\sigma_p(T)$, continuum spectrum $\sigma_c(T)$, residual spectrum $\sigma_r(T)$ and resolvent set $\rho(T)$.
- (b) Give a condition on the λ_j for T to be invertible.
- 5. Consider the distribution $u \in \mathcal{D}'(\mathbb{R})$ defined for $\phi \in \mathcal{D}(\mathbb{R})$ by

$$\langle u, \phi \rangle = \int_{-\infty}^{\infty} |x| \phi(x) dx$$

Find its derivative ∂u .

Part B.

1. The following functions f(x) [x is a real variable] can be represented by series (Taylor or Laurent) in powers of (x-2). Find the radius of convergence of the series in each case

(a)
$$f(x) = e^{x^2}$$
,
(b) $f(x) = \frac{\sin x - 3}{\sin x - 2}$,
(c) $f(x) = \frac{e^x}{(x - 2)(1 + e^x)}$.

2. Integrate

$$\int_{-\infty}^{\infty} \frac{\sin \alpha x}{\sinh \pi x} \, dx$$

3. Solve Laplace's equation

$$\phi_{xx} + \phi_{yy} = 0$$
 in the domain $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > 1, x^2 + (y+1)^2 < 4\}$

subject to the boundary condition

$$\phi(x,y) = a$$
 when $x^2 + y^2 = 1$ and $\phi(x,y) = b$ when $x^2 + (y+1)^2 = 4$

(a and b are real parameters; the two circles touch each other; express your answer in terms of the original real variables x ans y).

- 4. (a) Calculate the Fourier transform of a Gaussian $f(x) = e^{-x^2}$ $(x \in \mathbb{R})$.
 - (b) Is it possible that a function f(x) $(x \in \mathbb{R})$ and its Fourier transform $F(\mu)$ $(\mu \in \mathbb{R})$ both have finite support ?
- 5. Find the three-term asymtotic expansion of the integral

$$I(s) = \int_0^1 \ln(t) \ e^{ist} \ dt$$

with large real parameter $s \to +\infty$.