PhD Preliminary Qualifying Examination
 Applied Mathematics

August 17, 2015

Instructions: Answer three questions from Part A and three questions from Part B. Indicate clearly which questions you wish to have graded.

Part A.

1. Assume a bounded, self-adjoint operator $T: H \rightarrow H$, where H is a Hilbert space, satisfies

$$
\begin{equation*}
\langle T x, x\rangle \geq \beta\|x\|^{2}, \tag{1}
\end{equation*}
$$

for some $\beta>0$. The goal of this problem is to show that T is one-to-one and onto.
(a) Show that the nullspace of T is trivial, i.e. $\mathcal{N}(T)=\{0\}$.
(b) Show that the range $\mathcal{R}(T)$ is closed.
(c) Show that $\mathcal{R}(T)^{\perp}=\{0\}$.
(d) Why do we have $\mathcal{R}(T)=H$?
2. Let X be a Banach space, $f: X \rightarrow \mathbb{R}$ be a bounded linear functional, $y \in X$ fixed and $\alpha \in \mathbb{R}$.
(a) Prove that there exists a constant $C>0$ such that if $|\alpha|<C$, then the non-linear equation

$$
\begin{equation*}
x+\alpha f(x) x=y, \tag{2}
\end{equation*}
$$

has a unique solution x in the ball $B=\{x \in X \mid\|x-y\| \leq 1\}$.
(b) Suggest an iterative procedure for approximating the unique solution x to equation (2).
3. Let $\left(e_{n}\right)$ be an orthonormal sequence of a Hilbert space H. Show that $e_{n} \rightarrow 0$ weakly.
4. Let $\left(\lambda_{j}\right)$ be a sequence real numbers with $\lambda_{j} \neq 1$ for all j and $\lambda_{j} \rightarrow 1$. Consider the operator $T: \ell^{2} \rightarrow \ell^{2}$ defined for $\left(\xi_{j}\right) \in \ell^{2}$ by

$$
T\left(\xi_{j}\right)=\left(\lambda_{j} \xi_{j}\right) .
$$

(a) Find the spectrum $\sigma(T)$, point spectrum $\sigma_{p}(T)$, continuum spectrum $\sigma_{c}(T)$, residual spectrum $\sigma_{r}(T)$ and resolvent set $\rho(T)$.
(b) Give a condition on the λ_{j} for T to be invertible.
5. Consider the distribution $u \in \mathcal{D}^{\prime}(\mathbb{R})$ defined for $\phi \in \mathcal{D}(\mathbb{R})$ by

$$
\langle u, \phi\rangle=\int_{-\infty}^{\infty}|x| \phi(x) d x .
$$

Find its derivative ∂u.

Part B.

1. The following functions $f(x)$ [x is a real variable $]$ can be represented by series (Taylor or Laurent) in powers of $(x-2)$. Find the radius of convergence of the series in each case
(a) $\quad f(x)=e^{x^{2}}$,
(b) $f(x)=\frac{\sin x-3}{\sin x-2}$,
(c) $\quad f(x)=\frac{e^{x}}{(x-2)\left(1+e^{x}\right)}$.
2. Integrate

$$
\int_{-\infty}^{\infty} \frac{\sin \alpha x}{\sinh \pi x} d x
$$

3. Solve Laplace's equation

$$
\phi_{x x}+\phi_{y y}=0 \quad \text { in the domain } \quad D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>1, x^{2}+(y+1)^{2}<4\right\}
$$

subject to the boundary condition

$$
\phi(x, y)=a \text { when } x^{2}+y^{2}=1 \quad \text { and } \quad \phi(x, y)=b \text { when } x^{2}+(y+1)^{2}=4
$$

(a and b are real parameters; the two circles touch each other; express your answer in terms of the original real variables x ans y).
4. (a) Calculate the Fourier transform of a Gaussian $f(x)=e^{-x^{2}}(x \in \mathbb{R})$.
(b) Is it possible that a function $f(x)(x \in \mathbb{R})$ and its Fourier transform $F(\mu)(\mu \in \mathbb{R})$ both have finite support?
5. Find the three-term asymtotic expansion of the integral

$$
I(s)=\int_{0}^{1} \ln (t) e^{i s t} d t
$$

with large real parameter $s \rightarrow+\infty$.

