University of Utah, Department of Mathematics
 May 2018, Algebra Qualifying Exam

There are ten problems on the exam. You may attempt as many problems as you wish; five correct solutions count as a pass. Show all your work, and provide reasonable justification for your answers.

1. Show there is no simple group of order 144.
2. How many elements of order 3 can a group of order 21 have? List all the possibilities.
3. Suppose that $R=\mathbb{C}[x]$, and that M is the R-module generated by three elements a, b, and c, modulo the three relations $a-x c, x a-x b+x c$, and $x b-\left(x^{2}-1\right) c$. Write M as a direct sum of cyclic modules.
4. Determine the possible characteristic and minimal polynomials of an $n \times n$ matrix over \mathbb{C} that has rank 1 .
5. Find all the prime ideals of $\mathbb{Z}[x] /\left(30, x^{3}+1\right)$ and identify which are maximal.
6. Suppose $R=\mathbb{F}_{2}[x, y, z]$. Compute $\operatorname{Tor}_{1}^{R}(R /(x, y), R /(y, z))$.
7. Determine the irreducible factorization of $x^{5}-1$ over the field \mathbb{F}_{19}.
8. Let M / K be a Galois extension of degree 700. Prove that there exists an intermediate field L with $[L: K]=28$. Is L / K necessarily Galois?
9. Determine the Galois group of $x^{8}-2$ over \mathbb{Q}.
10. Find a Galois extension of \mathbb{Q} with Galois group isomorphic to $\mathbb{Z} / 3 \times \mathbb{Z} / 3$.
