University of Utah, Department of Mathematics January 2019, Algebra Qualifying Exam

There are ten problems on the exam. You may attempt as many problems as you wish; five correct solutions count as a pass. Show all your work, and provide reasonable justification for your answers.

- 1. Determine, up to isomorphism, the groups of order 20.
- 2. Is every automorphism of the alternating group A_4 an inner automorphism?
- 3. Let S_n denote the symmetric group on *n* elements. Does there exist an injective homomorphism $S_6 \longrightarrow S_5 \times S_5$?
- 4. Let $n \ge 2$ be an integer. Prove that the natural map $SL_2(\mathbb{Z}) \longrightarrow SL_2(\mathbb{Z}/n)$ is surjective.
- 5. Determine, up to conjugacy, all 3×3 matrices *M* over \mathbb{Q} that satisfy $M^3 = 2M^2$.
- 6. Let *M* and *N* be $n \times n$ matrices over \mathbb{C} with MN NM = M. Prove that $M^kN NM^k = kM^k$ for each $k \ge 1$. Prove that *M* is nilpotent.
- 7. Let $R = \mathbb{Q}[x]$ and consider the submodule *M* of R^2 generated by the elements $(x^2 1, x 1)$ and $(x^2 + x, x)$. Write *M* as a direct sum of cyclic modules.
- 8. Identify all the prime ideals in the ring $\mathbb{Z}/14[x,y]/(2y-1, x^2+x-y^2)$.
- 9. Suppose that *R* is a commutative ring with unity, and $N \subseteq M$ are *R*-modules. If $\text{Ext}^1(M/N, N) = 0$, prove that the inclusion $N \hookrightarrow M$ is split.
- 10. Let K be a field, and let L be the splitting field of an irreducible and separable polynomial $g(x) \in K[x]$. If Gal(L/K) is abelian, and $\alpha \in L$ is a root of g(x), prove that $L = K(\alpha)$.