University of Utah, Department of Mathematics
 January 2016, Algebra Qualifying Exam

Show all your work and provide reasonable justification. You may attempt as many problems as you wish; five correct solutions count as a pass.

1. Prove that any group of order 345 is cyclic.
2. Prove that there are no simple groups of order 90 .
3. Write down the rational and Jordan canonical forms of the following matrix (viewed over \mathbb{C}):

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-2 & -2 & 0 & 1 \\
-2 & 0 & -1 & -2
\end{array}\right]
$$

4. Prove that $n \times n$ matrices A and B have the same characteristic polynomial if and only if the trace of A^{k} equals the trace of B^{k} for each $k \geqslant 1$.
5. Let R be a Noetherian ring. Prove that any surjective ring homomorphism $\varphi: R \longrightarrow R$ is an isomorphism.
6. Calculate the Galois group $p(x):=x^{3}+3 x+2$, viewed as a polynomial over \mathbb{Q}.
7. Let K be a field and $f(x) \in K[x]$ an irreducible polynomial. Let $n \geqslant 2$ be an integer and set $g(x):=f\left(x^{n}\right)$. Prove that if $h(x)$ is an irreducible factor of $g(x)$, then the degree of f divides the degree of h.
8. Let p be a prime number. Prove that if $x^{p^{n}}-x+1$ is irreducible over \mathbb{F}_{p}, then $n=1$ or $n=2=p$. (Hint: Note that if α is a root of the equation, then $\alpha^{p}-\alpha$ is in $\mathbb{F}_{p^{n}}$.)
9. Let $R=\mathbb{Z}[x]$, set $I=\left(x^{3}\right)$, and let U be the multiplicatively closed set $\{n \in \mathbb{Z} \mid n$ is odd $\}$. Find all the prime ideals in the ring $\left(U^{-1} R\right) / U^{-1} I$.
10. Prove that the \mathbb{Z}-module \mathbb{Q} is not projective.
