University of Utah, Department of Mathematics January 2016, Algebra Qualifying Exam

Show all your work and provide reasonable justification. You may attempt as many problems as you wish; five correct solutions count as a pass.

- 1. Prove that any group of order 345 is cyclic.
- 2. Prove that there are no simple groups of order 90.
- 3. Write down the rational and Jordan canonical forms of the following matrix (viewed over \mathbb{C}):

[1	0	0	0
0	1	0	
-2	-2	0	1
$\lfloor -2 \rfloor$	0	-1	-2

- 4. Prove that $n \times n$ matrices *A* and *B* have the same characteristic polynomial if and only if the trace of A^k equals the trace of B^k for each $k \ge 1$.
- 5. Let *R* be a Noetherian ring. Prove that any surjective ring homomorphism $\varphi \colon R \longrightarrow R$ is an isomorphism.
- 6. Calculate the Galois group $p(x) := x^3 + 3x + 2$, viewed as a polynomial over \mathbb{Q} .
- 7. Let *K* be a field and $f(x) \in K[x]$ an irreducible polynomial. Let $n \ge 2$ be an integer and set $g(x) := f(x^n)$. Prove that if h(x) is an irreducible factor of g(x), then the degree of *f* divides the degree of *h*.
- 8. Let *p* be a prime number. Prove that if $x^{p^n} x + 1$ is irreducible over \mathbb{F}_p , then n = 1 or n = 2 = p. (Hint: Note that if α is a root of the equation, then $\alpha^p - \alpha$ is in \mathbb{F}_{p^n} .)
- 9. Let $R = \mathbb{Z}[x]$, set $I = (x^3)$, and let U be the multiplicatively closed set $\{n \in \mathbb{Z} \mid n \text{ is odd}\}$. Find all the prime ideals in the ring $(U^{-1}R)/U^{-1}I$.
- 10. Prove that the \mathbb{Z} -module \mathbb{Q} is not projective.